Properties

Label 4.2e17.8t21.2
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{17}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$131072= 2^{17} $
Artin number field: Splitting field of $f= x^{8} + 4 x^{4} - 4 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 29 + 32\cdot 337 + 251\cdot 337^{2} + 21\cdot 337^{3} + 316\cdot 337^{4} + 325\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 41 + 271\cdot 337 + 65\cdot 337^{2} + 297\cdot 337^{3} + 279\cdot 337^{4} + 116\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 113 + 290\cdot 337 + 244\cdot 337^{2} + 57\cdot 337^{3} + 312\cdot 337^{4} + 320\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 124 + 156\cdot 337 + 320\cdot 337^{2} + 17\cdot 337^{3} + 193\cdot 337^{4} + 303\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 213 + 180\cdot 337 + 16\cdot 337^{2} + 319\cdot 337^{3} + 143\cdot 337^{4} + 33\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 224 + 46\cdot 337 + 92\cdot 337^{2} + 279\cdot 337^{3} + 24\cdot 337^{4} + 16\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 296 + 65\cdot 337 + 271\cdot 337^{2} + 39\cdot 337^{3} + 57\cdot 337^{4} + 220\cdot 337^{5} +O\left(337^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 308 + 304\cdot 337 + 85\cdot 337^{2} + 315\cdot 337^{3} + 20\cdot 337^{4} + 11\cdot 337^{5} +O\left(337^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,8)(4,5)$
$(1,2,4,3)(5,6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $2$ $(1,8)(4,5)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$4$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$4$ $4$ $(1,2,4,3)(5,6,8,7)$ $0$
$4$ $4$ $(1,3,4,2)(5,7,8,6)$ $0$
$4$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$
$4$ $4$ $(1,4,8,5)(3,6)$ $0$
$4$ $4$ $(1,5,8,4)(3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.