Properties

Label 4.2e17.8t21.1c1
Dimension 4
Group $C_2^3: C_4$
Conductor $ 2^{17}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3: C_4$
Conductor:$131072= 2^{17} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} - 2 x^{4} + 12 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 57 + 124\cdot 337 + 149\cdot 337^{2} + 116\cdot 337^{3} + 44\cdot 337^{4} + 83\cdot 337^{5} + 150\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 78 + 179\cdot 337 + 161\cdot 337^{2} + 320\cdot 337^{3} + 108\cdot 337^{4} + 326\cdot 337^{5} + 96\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 82 + 335\cdot 337 + 26\cdot 337^{2} + 291\cdot 337^{3} + 107\cdot 337^{4} + 22\cdot 337^{5} + 25\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 125 + 167\cdot 337 + 218\cdot 337^{2} + 271\cdot 337^{3} + 327\cdot 337^{4} + 51\cdot 337^{5} + 251\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 212 + 169\cdot 337 + 118\cdot 337^{2} + 65\cdot 337^{3} + 9\cdot 337^{4} + 285\cdot 337^{5} + 85\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 255 + 337 + 310\cdot 337^{2} + 45\cdot 337^{3} + 229\cdot 337^{4} + 314\cdot 337^{5} + 311\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 259 + 157\cdot 337 + 175\cdot 337^{2} + 16\cdot 337^{3} + 228\cdot 337^{4} + 10\cdot 337^{5} + 240\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 280 + 212\cdot 337 + 187\cdot 337^{2} + 220\cdot 337^{3} + 292\cdot 337^{4} + 253\cdot 337^{5} + 186\cdot 337^{6} +O\left(337^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,4,6)(2,5,3,8)$
$(3,6)(4,5)$
$(2,7)(3,6)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$2$$(2,7)(3,6)$$0$
$2$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$4$$2$$(1,8)(2,7)$$0$
$4$$4$$(1,7,4,6)(2,5,3,8)$$0$
$4$$4$$(1,6,4,7)(2,8,3,5)$$0$
$4$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$4$$(1,2,4,6)(3,8,7,5)$$0$
$4$$4$$(1,6,4,2)(3,5,7,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.