Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 149 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 36\cdot 149 + 40\cdot 149^{2} + 22\cdot 149^{3} + 120\cdot 149^{4} + 120\cdot 149^{5} + 61\cdot 149^{6} + 3\cdot 149^{7} +O\left(149^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 17 + 47\cdot 149 + 148\cdot 149^{2} + 18\cdot 149^{3} + 74\cdot 149^{4} + 102\cdot 149^{5} + 92\cdot 149^{6} + 145\cdot 149^{7} +O\left(149^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 27 + 76\cdot 149 + 62\cdot 149^{2} + 25\cdot 149^{3} + 126\cdot 149^{4} + 93\cdot 149^{5} + 56\cdot 149^{6} + 26\cdot 149^{7} +O\left(149^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 73 + 21\cdot 149 + 60\cdot 149^{2} + 81\cdot 149^{3} + 20\cdot 149^{4} + 141\cdot 149^{5} + 137\cdot 149^{6} + 100\cdot 149^{7} +O\left(149^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 76 + 127\cdot 149 + 88\cdot 149^{2} + 67\cdot 149^{3} + 128\cdot 149^{4} + 7\cdot 149^{5} + 11\cdot 149^{6} + 48\cdot 149^{7} +O\left(149^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 122 + 72\cdot 149 + 86\cdot 149^{2} + 123\cdot 149^{3} + 22\cdot 149^{4} + 55\cdot 149^{5} + 92\cdot 149^{6} + 122\cdot 149^{7} +O\left(149^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 132 + 101\cdot 149 + 130\cdot 149^{3} + 74\cdot 149^{4} + 46\cdot 149^{5} + 56\cdot 149^{6} + 3\cdot 149^{7} +O\left(149^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 141 + 112\cdot 149 + 108\cdot 149^{2} + 126\cdot 149^{3} + 28\cdot 149^{4} + 28\cdot 149^{5} + 87\cdot 149^{6} + 145\cdot 149^{7} +O\left(149^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,5,2)(4,7,8,6)$ |
| $(1,5)(2,3)(4,8)(6,7)$ |
| $(1,2,8,7)(3,5,6,4)$ |
| $(1,8)(4,5)$ |
| $(2,7)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(2,7)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,5,3)(4,6,8,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,3,5,2)(4,7,8,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,5)(2,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,8,4)(2,7)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.