Properties

Label 4.2e14_5e3.8t21.1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{14} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$2048000= 2^{14} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} + 30 x^{4} - 40 x^{2} + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 5 + 15\cdot 109 + 49\cdot 109^{2} + 9\cdot 109^{3} + 84\cdot 109^{4} + 4\cdot 109^{5} + 48\cdot 109^{6} + 56\cdot 109^{7} +O\left(109^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 15 + 89\cdot 109 + 46\cdot 109^{2} + 40\cdot 109^{3} + 10\cdot 109^{4} + 74\cdot 109^{5} + 60\cdot 109^{6} + 60\cdot 109^{7} +O\left(109^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 26 + 64\cdot 109 + 29\cdot 109^{2} + 58\cdot 109^{3} + 83\cdot 109^{4} + 90\cdot 109^{5} + 72\cdot 109^{6} + 12\cdot 109^{7} +O\left(109^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 45 + 107\cdot 109 + 44\cdot 109^{2} + 109^{3} + 64\cdot 109^{4} + 101\cdot 109^{5} + 10\cdot 109^{6} + 95\cdot 109^{7} +O\left(109^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 64 + 109 + 64\cdot 109^{2} + 107\cdot 109^{3} + 44\cdot 109^{4} + 7\cdot 109^{5} + 98\cdot 109^{6} + 13\cdot 109^{7} +O\left(109^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 83 + 44\cdot 109 + 79\cdot 109^{2} + 50\cdot 109^{3} + 25\cdot 109^{4} + 18\cdot 109^{5} + 36\cdot 109^{6} + 96\cdot 109^{7} +O\left(109^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 94 + 19\cdot 109 + 62\cdot 109^{2} + 68\cdot 109^{3} + 98\cdot 109^{4} + 34\cdot 109^{5} + 48\cdot 109^{6} + 48\cdot 109^{7} +O\left(109^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 104 + 93\cdot 109 + 59\cdot 109^{2} + 99\cdot 109^{3} + 24\cdot 109^{4} + 104\cdot 109^{5} + 60\cdot 109^{6} + 52\cdot 109^{7} +O\left(109^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(2,7)(4,5)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,8)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$
$2$ $2$ $(2,7)(4,5)$ $0$
$4$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$4$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$4$ $4$ $(1,2,6,4)(3,5,8,7)$ $0$
$4$ $4$ $(1,4,6,2)(3,7,8,5)$ $0$
$4$ $4$ $(1,8)(2,5,7,4)$ $0$
$4$ $4$ $(1,8)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.