Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 15\cdot 109 + 49\cdot 109^{2} + 9\cdot 109^{3} + 84\cdot 109^{4} + 4\cdot 109^{5} + 48\cdot 109^{6} + 56\cdot 109^{7} +O\left(109^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 + 89\cdot 109 + 46\cdot 109^{2} + 40\cdot 109^{3} + 10\cdot 109^{4} + 74\cdot 109^{5} + 60\cdot 109^{6} + 60\cdot 109^{7} +O\left(109^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 26 + 64\cdot 109 + 29\cdot 109^{2} + 58\cdot 109^{3} + 83\cdot 109^{4} + 90\cdot 109^{5} + 72\cdot 109^{6} + 12\cdot 109^{7} +O\left(109^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 45 + 107\cdot 109 + 44\cdot 109^{2} + 109^{3} + 64\cdot 109^{4} + 101\cdot 109^{5} + 10\cdot 109^{6} + 95\cdot 109^{7} +O\left(109^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 64 + 109 + 64\cdot 109^{2} + 107\cdot 109^{3} + 44\cdot 109^{4} + 7\cdot 109^{5} + 98\cdot 109^{6} + 13\cdot 109^{7} +O\left(109^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 83 + 44\cdot 109 + 79\cdot 109^{2} + 50\cdot 109^{3} + 25\cdot 109^{4} + 18\cdot 109^{5} + 36\cdot 109^{6} + 96\cdot 109^{7} +O\left(109^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 94 + 19\cdot 109 + 62\cdot 109^{2} + 68\cdot 109^{3} + 98\cdot 109^{4} + 34\cdot 109^{5} + 48\cdot 109^{6} + 48\cdot 109^{7} +O\left(109^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 104 + 93\cdot 109 + 59\cdot 109^{2} + 99\cdot 109^{3} + 24\cdot 109^{4} + 104\cdot 109^{5} + 60\cdot 109^{6} + 52\cdot 109^{7} +O\left(109^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4,8,5)(2,6,7,3)$ |
| $(2,7)(4,5)$ |
| $(1,6)(2,5)(3,8)(4,7)$ |
| $(1,8)(2,5,7,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,6)(2,5)(3,8)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,6,4)(3,5,8,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,6,2)(3,7,8,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(2,5,7,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(2,4,7,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.