Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 153\cdot 241 + 178\cdot 241^{2} + 168\cdot 241^{3} + 47\cdot 241^{4} + 181\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 + 170\cdot 241 + 62\cdot 241^{2} + 87\cdot 241^{3} + 228\cdot 241^{4} + 60\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 53 + 177\cdot 241 + 39\cdot 241^{2} + 103\cdot 241^{3} + 223\cdot 241^{4} + 121\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 120 + 214\cdot 241 + 30\cdot 241^{2} + 160\cdot 241^{3} + 142\cdot 241^{4} + 202\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 121 + 26\cdot 241 + 210\cdot 241^{2} + 80\cdot 241^{3} + 98\cdot 241^{4} + 38\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 188 + 63\cdot 241 + 201\cdot 241^{2} + 137\cdot 241^{3} + 17\cdot 241^{4} + 119\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 229 + 70\cdot 241 + 178\cdot 241^{2} + 153\cdot 241^{3} + 12\cdot 241^{4} + 180\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 238 + 87\cdot 241 + 62\cdot 241^{2} + 72\cdot 241^{3} + 193\cdot 241^{4} + 59\cdot 241^{5} +O\left(241^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4,8,5)(2,6,7,3)$ |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(2,7)(3,6)$ |
| $(1,5,8,4)(2,6,7,3)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,4)(2,6)(3,7)(5,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,5)(3,8)(4,7)$ |
$0$ |
| $2$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,6)(3,7)(5,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,4)(5,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(4,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,4)(2,6,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,3)(2,4,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,4,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,4,6,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.