Properties

Label 4.2e14_3e2_5e2.8t22.10
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{14} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$3686400= 2^{14} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 10 x^{6} + 62 x^{4} - 140 x^{2} + 100 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 241 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 153\cdot 241 + 178\cdot 241^{2} + 168\cdot 241^{3} + 47\cdot 241^{4} + 181\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 170\cdot 241 + 62\cdot 241^{2} + 87\cdot 241^{3} + 228\cdot 241^{4} + 60\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 53 + 177\cdot 241 + 39\cdot 241^{2} + 103\cdot 241^{3} + 223\cdot 241^{4} + 121\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 120 + 214\cdot 241 + 30\cdot 241^{2} + 160\cdot 241^{3} + 142\cdot 241^{4} + 202\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 121 + 26\cdot 241 + 210\cdot 241^{2} + 80\cdot 241^{3} + 98\cdot 241^{4} + 38\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 188 + 63\cdot 241 + 201\cdot 241^{2} + 137\cdot 241^{3} + 17\cdot 241^{4} + 119\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 229 + 70\cdot 241 + 178\cdot 241^{2} + 153\cdot 241^{3} + 12\cdot 241^{4} + 180\cdot 241^{5} +O\left(241^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 238 + 87\cdot 241 + 62\cdot 241^{2} + 72\cdot 241^{3} + 193\cdot 241^{4} + 59\cdot 241^{5} +O\left(241^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,8,5)(2,6,7,3)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,2)(3,5)(4,6)(7,8)$
$(2,7)(3,6)$
$(1,5,8,4)(2,6,7,3)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,4)(2,6)(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(2,7)(3,6)$ $0$
$2$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $0$
$2$ $2$ $(3,6)(4,5)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $2$ $(2,7)(4,5)$ $0$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$2$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.