Properties

Label 4.2e14_19e2.8t23.8
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{14} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$5914624= 2^{14} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 12 x^{6} - 16 x^{5} + 8 x^{4} + 32 x^{3} - 60 x^{2} + 72 x + 50 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 12 + \left(43 a + 49\right)\cdot 59 + \left(51 a + 14\right)\cdot 59^{2} + \left(9 a + 12\right)\cdot 59^{3} + \left(17 a + 33\right)\cdot 59^{4} + \left(42 a + 49\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 49\cdot 59 + 45\cdot 59^{2} + 33\cdot 59^{3} + 4\cdot 59^{4} + 50\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 51 a + 56 + \left(49 a + 8\right)\cdot 59 + \left(33 a + 35\right)\cdot 59^{2} + \left(33 a + 35\right)\cdot 59^{3} + \left(19 a + 40\right)\cdot 59^{4} + \left(22 a + 8\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 28 + \left(27 a + 14\right)\cdot 59 + \left(46 a + 22\right)\cdot 59^{2} + \left(23 a + 20\right)\cdot 59^{3} + \left(57 a + 46\right)\cdot 59^{4} + \left(35 a + 4\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 7 + 11\cdot 59 + 34\cdot 59^{2} + 12\cdot 59^{3} + 23\cdot 59^{4} + 53\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 48 + \left(9 a + 7\right)\cdot 59 + \left(25 a + 19\right)\cdot 59^{2} + \left(25 a + 35\right)\cdot 59^{3} + \left(39 a + 26\right)\cdot 59^{4} + \left(36 a + 11\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 39 a + 48 + \left(31 a + 21\right)\cdot 59 + \left(12 a + 41\right)\cdot 59^{2} + \left(35 a + 56\right)\cdot 59^{3} + \left(a + 20\right)\cdot 59^{4} + \left(23 a + 42\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 40 a + 31 + \left(15 a + 14\right)\cdot 59 + \left(7 a + 23\right)\cdot 59^{2} + \left(49 a + 29\right)\cdot 59^{3} + \left(41 a + 40\right)\cdot 59^{4} + \left(16 a + 15\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,5)(6,8)$
$(1,6,5)(2,8,7)$
$(1,8)(2,5)(3,4)(6,7)$
$(1,2,8,5)(3,6,4,7)$
$(1,4,8,3)(2,6,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,5)(3,4)(6,7)$ $-4$
$12$ $2$ $(1,7)(2,5)(6,8)$ $0$
$8$ $3$ $(1,4,2)(3,5,8)$ $1$
$6$ $4$ $(1,4,8,3)(2,6,5,7)$ $0$
$8$ $6$ $(1,5,4,8,2,3)(6,7)$ $-1$
$6$ $8$ $(1,2,7,4,8,5,6,3)$ $0$
$6$ $8$ $(1,5,7,3,8,2,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.