Properties

Label 4.2e14_17e2.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{14} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$4734976= 2^{14} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} + 10 x^{4} - 4 x^{2} + 68 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 353 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 31 + 120\cdot 353 + 246\cdot 353^{3} + 191\cdot 353^{4} + 336\cdot 353^{5} + 264\cdot 353^{6} + 94\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 91 + 320\cdot 353 + 98\cdot 353^{2} + 308\cdot 353^{3} + 134\cdot 353^{4} + 194\cdot 353^{5} + 201\cdot 353^{6} + 155\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 130 + 333\cdot 353 + 26\cdot 353^{2} + 163\cdot 353^{3} + 12\cdot 353^{4} + 169\cdot 353^{5} + 340\cdot 353^{6} + 164\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 138 + 292\cdot 353 + 193\cdot 353^{2} + 79\cdot 353^{3} + 58\cdot 353^{4} + 25\cdot 353^{5} + 186\cdot 353^{6} + 236\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 215 + 60\cdot 353 + 159\cdot 353^{2} + 273\cdot 353^{3} + 294\cdot 353^{4} + 327\cdot 353^{5} + 166\cdot 353^{6} + 116\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 223 + 19\cdot 353 + 326\cdot 353^{2} + 189\cdot 353^{3} + 340\cdot 353^{4} + 183\cdot 353^{5} + 12\cdot 353^{6} + 188\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 262 + 32\cdot 353 + 254\cdot 353^{2} + 44\cdot 353^{3} + 218\cdot 353^{4} + 158\cdot 353^{5} + 151\cdot 353^{6} + 197\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 322 + 232\cdot 353 + 352\cdot 353^{2} + 106\cdot 353^{3} + 161\cdot 353^{4} + 16\cdot 353^{5} + 88\cdot 353^{6} + 258\cdot 353^{7} +O\left(353^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(2,7)(4,5)$
$(2,5)(3,6)(4,7)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$4$$2$$(2,5)(3,6)(4,7)$$0$
$4$$2$$(2,4)(3,6)(5,7)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$4$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$8$$(1,2,3,4,8,7,6,5)$$0$
$4$$8$$(1,4,3,7,8,5,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.