Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 353 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 31 + 120\cdot 353 + 246\cdot 353^{3} + 191\cdot 353^{4} + 336\cdot 353^{5} + 264\cdot 353^{6} + 94\cdot 353^{7} +O\left(353^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 91 + 320\cdot 353 + 98\cdot 353^{2} + 308\cdot 353^{3} + 134\cdot 353^{4} + 194\cdot 353^{5} + 201\cdot 353^{6} + 155\cdot 353^{7} +O\left(353^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 130 + 333\cdot 353 + 26\cdot 353^{2} + 163\cdot 353^{3} + 12\cdot 353^{4} + 169\cdot 353^{5} + 340\cdot 353^{6} + 164\cdot 353^{7} +O\left(353^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 138 + 292\cdot 353 + 193\cdot 353^{2} + 79\cdot 353^{3} + 58\cdot 353^{4} + 25\cdot 353^{5} + 186\cdot 353^{6} + 236\cdot 353^{7} +O\left(353^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 215 + 60\cdot 353 + 159\cdot 353^{2} + 273\cdot 353^{3} + 294\cdot 353^{4} + 327\cdot 353^{5} + 166\cdot 353^{6} + 116\cdot 353^{7} +O\left(353^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 223 + 19\cdot 353 + 326\cdot 353^{2} + 189\cdot 353^{3} + 340\cdot 353^{4} + 183\cdot 353^{5} + 12\cdot 353^{6} + 188\cdot 353^{7} +O\left(353^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 262 + 32\cdot 353 + 254\cdot 353^{2} + 44\cdot 353^{3} + 218\cdot 353^{4} + 158\cdot 353^{5} + 151\cdot 353^{6} + 197\cdot 353^{7} +O\left(353^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 322 + 232\cdot 353 + 352\cdot 353^{2} + 106\cdot 353^{3} + 161\cdot 353^{4} + 16\cdot 353^{5} + 88\cdot 353^{6} + 258\cdot 353^{7} +O\left(353^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,3,8,6)(2,4,7,5)$ |
| $(2,7)(4,5)$ |
| $(2,5)(3,6)(4,7)$ |
| $(1,5)(2,6)(3,7)(4,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(2,7)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$0$ |
| $4$ |
$2$ |
$(2,5)(3,6)(4,7)$ |
$0$ |
| $4$ |
$2$ |
$(2,4)(3,6)(5,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,4,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,5,7,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,2,3,4,8,7,6,5)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,3,7,8,5,6,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.