Properties

Label 4.2e14_17e2.8t15.1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{14} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$4734976= 2^{14} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 10 x^{6} + 42 x^{4} - 84 x^{2} + 68 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 353 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 34 + 85\cdot 353 + 283\cdot 353^{2} + 180\cdot 353^{3} + 202\cdot 353^{4} + 130\cdot 353^{5} + 207\cdot 353^{6} + 93\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 52 + 243\cdot 353 + 43\cdot 353^{2} + 269\cdot 353^{3} + 273\cdot 353^{4} + 72\cdot 353^{5} + 111\cdot 353^{6} + 104\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 78 + 249\cdot 353 + 318\cdot 353^{2} + 125\cdot 353^{3} + 334\cdot 353^{4} + 283\cdot 353^{5} + 349\cdot 353^{6} + 21\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 123 + 291\cdot 353 + 73\cdot 353^{2} + 251\cdot 353^{3} + 254\cdot 353^{4} + 176\cdot 353^{5} + 77\cdot 353^{6} + 145\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 230 + 61\cdot 353 + 279\cdot 353^{2} + 101\cdot 353^{3} + 98\cdot 353^{4} + 176\cdot 353^{5} + 275\cdot 353^{6} + 207\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 275 + 103\cdot 353 + 34\cdot 353^{2} + 227\cdot 353^{3} + 18\cdot 353^{4} + 69\cdot 353^{5} + 3\cdot 353^{6} + 331\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 301 + 109\cdot 353 + 309\cdot 353^{2} + 83\cdot 353^{3} + 79\cdot 353^{4} + 280\cdot 353^{5} + 241\cdot 353^{6} + 248\cdot 353^{7} +O\left(353^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 319 + 267\cdot 353 + 69\cdot 353^{2} + 172\cdot 353^{3} + 150\cdot 353^{4} + 222\cdot 353^{5} + 145\cdot 353^{6} + 259\cdot 353^{7} +O\left(353^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(3,6)(4,8)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,8)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,5,8,4)(2,6,7,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(4,5)$ $0$
$4$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$4$ $2$ $(1,5)(3,6)(4,8)$ $0$
$4$ $2$ $(1,4)(3,6)(5,8)$ $0$
$2$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$4$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
$4$ $8$ $(1,2,5,6,8,7,4,3)$ $0$
$4$ $8$ $(1,3,5,2,8,6,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.