Properties

Label 4.2e13_3e3_5e2.12t34.3c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{13} \cdot 3^{3} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$5529600= 2^{13} \cdot 3^{3} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} + 2 x^{2} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.2e3_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 27 + \left(58 a + 64\right)\cdot 67 + \left(49 a + 29\right)\cdot 67^{2} + \left(36 a + 57\right)\cdot 67^{3} + \left(18 a + 15\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 51 + 18\cdot 67 + 34\cdot 67^{2} + 44\cdot 67^{3} + 18\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 a + 31 + \left(8 a + 27\right)\cdot 67 + \left(17 a + 37\right)\cdot 67^{2} + \left(30 a + 20\right)\cdot 67^{3} + \left(48 a + 53\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 a + 44 + \left(63 a + 15\right)\cdot 67 + \left(29 a + 29\right)\cdot 67^{2} + \left(43 a + 5\right)\cdot 67^{3} + \left(56 a + 56\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 + 53\cdot 67 + 51\cdot 67^{2} + 57\cdot 67^{3} + 18\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 35 + \left(3 a + 21\right)\cdot 67 + \left(37 a + 18\right)\cdot 67^{2} + \left(23 a + 15\right)\cdot 67^{3} + \left(10 a + 38\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,4)(2,5)(3,6)$$-2$
$6$$2$$(2,3)$$0$
$9$$2$$(2,3)(5,6)$$0$
$4$$3$$(1,2,3)$$-2$
$4$$3$$(1,2,3)(4,5,6)$$1$
$18$$4$$(1,4)(2,6,3,5)$$0$
$12$$6$$(1,5,2,6,3,4)$$1$
$12$$6$$(2,3)(4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.