Properties

Label 4.2e13_3e2_11e3.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{13} \cdot 3^{2} \cdot 11^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$98131968= 2^{13} \cdot 3^{2} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} - 3 x^{2} + 2 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 8 + \left(36 a + 37\right)\cdot 59 + \left(24 a + 55\right)\cdot 59^{2} + \left(7 a + 11\right)\cdot 59^{3} + \left(14 a + 10\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 + 43\cdot 59 + 51\cdot 59^{2} + 49\cdot 59^{3} + 58\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 + 36\cdot 59 + 49\cdot 59^{2} + 33\cdot 59^{3} + 44\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 a + 21 + \left(22 a + 1\right)\cdot 59 + \left(34 a + 44\right)\cdot 59^{2} + \left(51 a + 53\right)\cdot 59^{3} + \left(44 a + 16\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + \left(32 a + 47\right)\cdot 59 + 6 a\cdot 59^{2} + \left(55 a + 19\right)\cdot 59^{3} + 41 a\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 50 a + 9 + \left(26 a + 11\right)\cdot 59 + \left(52 a + 34\right)\cdot 59^{2} + \left(3 a + 8\right)\cdot 59^{3} + \left(17 a + 46\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $0$
$6$ $2$ $(3,4)$ $-2$
$9$ $2$ $(3,4)(5,6)$ $0$
$4$ $3$ $(1,3,4)(2,5,6)$ $-2$
$4$ $3$ $(1,3,4)$ $1$
$18$ $4$ $(1,2)(3,6,4,5)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $0$
$12$ $6$ $(2,5,6)(3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.