Properties

Label 4.2e13_17e2.8t21.4c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{13} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$2367488= 2^{13} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} + 34 x^{4} - 72 x^{2} + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 359 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 51 + 274\cdot 359 + 254\cdot 359^{2} + 172\cdot 359^{3} + 309\cdot 359^{4} + 328\cdot 359^{5} + 308\cdot 359^{6} +O\left(359^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 73 + 346\cdot 359 + 104\cdot 359^{2} + 170\cdot 359^{3} + 150\cdot 359^{4} + 93\cdot 359^{5} + 122\cdot 359^{6} +O\left(359^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 135 + 234\cdot 359 + 228\cdot 359^{2} + 357\cdot 359^{3} + 97\cdot 359^{4} + 333\cdot 359^{5} + 3\cdot 359^{6} +O\left(359^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 142 + 349\cdot 359 + 68\cdot 359^{2} + 220\cdot 359^{3} + 163\cdot 359^{4} + 98\cdot 359^{5} + 81\cdot 359^{6} +O\left(359^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 217 + 9\cdot 359 + 290\cdot 359^{2} + 138\cdot 359^{3} + 195\cdot 359^{4} + 260\cdot 359^{5} + 277\cdot 359^{6} +O\left(359^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 224 + 124\cdot 359 + 130\cdot 359^{2} + 359^{3} + 261\cdot 359^{4} + 25\cdot 359^{5} + 355\cdot 359^{6} +O\left(359^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 286 + 12\cdot 359 + 254\cdot 359^{2} + 188\cdot 359^{3} + 208\cdot 359^{4} + 265\cdot 359^{5} + 236\cdot 359^{6} +O\left(359^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 308 + 84\cdot 359 + 104\cdot 359^{2} + 186\cdot 359^{3} + 49\cdot 359^{4} + 30\cdot 359^{5} + 50\cdot 359^{6} +O\left(359^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,3,8,6)(4,5)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,8)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$4$$4$$(1,5,6,7)(2,8,4,3)$$0$
$4$$4$$(1,7,6,5)(2,3,4,8)$$0$
$4$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$4$$(1,8)(2,5,7,4)$$0$
$4$$4$$(1,8)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.