Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 359 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 51 + 274\cdot 359 + 254\cdot 359^{2} + 172\cdot 359^{3} + 309\cdot 359^{4} + 328\cdot 359^{5} + 308\cdot 359^{6} +O\left(359^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 73 + 346\cdot 359 + 104\cdot 359^{2} + 170\cdot 359^{3} + 150\cdot 359^{4} + 93\cdot 359^{5} + 122\cdot 359^{6} +O\left(359^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 135 + 234\cdot 359 + 228\cdot 359^{2} + 357\cdot 359^{3} + 97\cdot 359^{4} + 333\cdot 359^{5} + 3\cdot 359^{6} +O\left(359^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 142 + 349\cdot 359 + 68\cdot 359^{2} + 220\cdot 359^{3} + 163\cdot 359^{4} + 98\cdot 359^{5} + 81\cdot 359^{6} +O\left(359^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 217 + 9\cdot 359 + 290\cdot 359^{2} + 138\cdot 359^{3} + 195\cdot 359^{4} + 260\cdot 359^{5} + 277\cdot 359^{6} +O\left(359^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 224 + 124\cdot 359 + 130\cdot 359^{2} + 359^{3} + 261\cdot 359^{4} + 25\cdot 359^{5} + 355\cdot 359^{6} +O\left(359^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 286 + 12\cdot 359 + 254\cdot 359^{2} + 188\cdot 359^{3} + 208\cdot 359^{4} + 265\cdot 359^{5} + 236\cdot 359^{6} +O\left(359^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 308 + 84\cdot 359 + 104\cdot 359^{2} + 186\cdot 359^{3} + 49\cdot 359^{4} + 30\cdot 359^{5} + 50\cdot 359^{6} +O\left(359^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(1,3,8,6)(4,5)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(1,8)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,6,7)(2,8,4,3)$ |
$0$ |
| $4$ |
$4$ |
$(1,7,6,5)(2,3,4,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(2,5,7,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,8)(2,4,7,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.