Properties

Label 4.2e13_17e2.8t21.3
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{13} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$2367488= 2^{13} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{6} - 2 x^{2} + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 13\cdot 47 + 39\cdot 47^{2} + 32\cdot 47^{3} + 34\cdot 47^{4} + 23\cdot 47^{5} + 33\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 14 + 9\cdot 47 + 4\cdot 47^{2} + 6\cdot 47^{3} + 32\cdot 47^{4} + 39\cdot 47^{5} + 39\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 20 + 29\cdot 47 + 31\cdot 47^{2} + 27\cdot 47^{4} + 47^{5} + 36\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 23 + 31\cdot 47 + 3\cdot 47^{2} + 15\cdot 47^{3} + 44\cdot 47^{4} + 19\cdot 47^{5} + 43\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 24 + 15\cdot 47 + 43\cdot 47^{2} + 31\cdot 47^{3} + 2\cdot 47^{4} + 27\cdot 47^{5} + 3\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 27 + 17\cdot 47 + 15\cdot 47^{2} + 46\cdot 47^{3} + 19\cdot 47^{4} + 45\cdot 47^{5} + 10\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 33 + 37\cdot 47 + 42\cdot 47^{2} + 40\cdot 47^{3} + 14\cdot 47^{4} + 7\cdot 47^{5} + 7\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 45 + 33\cdot 47 + 7\cdot 47^{2} + 14\cdot 47^{3} + 12\cdot 47^{4} + 23\cdot 47^{5} + 13\cdot 47^{6} +O\left(47^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(1,6,8,3)(4,5)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,8)(3,6)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(2,7)(4,5)$ $0$
$4$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$4$ $4$ $(1,5,3,2)(4,6,7,8)$ $0$
$4$ $4$ $(1,2,3,5)(4,8,7,6)$ $0$
$4$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$4$ $4$ $(1,6,8,3)(4,5)$ $0$
$4$ $4$ $(1,3,8,6)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.