Properties

Label 4.2e12_7e2.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$200704= 2^{12} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{5} + 8 x^{3} + 4 x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 25 + 76\cdot 281 + 216\cdot 281^{2} + 165\cdot 281^{3} + 95\cdot 281^{4} + 195\cdot 281^{5} + 37\cdot 281^{6} + 93\cdot 281^{7} +O\left(281^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 44 + 272\cdot 281 + 251\cdot 281^{2} + 149\cdot 281^{3} + 22\cdot 281^{4} + 152\cdot 281^{5} + 56\cdot 281^{6} + 72\cdot 281^{7} +O\left(281^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 88 + 211\cdot 281 + 242\cdot 281^{2} + 23\cdot 281^{3} + 207\cdot 281^{4} + 9\cdot 281^{5} + 106\cdot 281^{6} + 109\cdot 281^{7} +O\left(281^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 124 + 2\cdot 281 + 132\cdot 281^{2} + 222\cdot 281^{3} + 236\cdot 281^{4} + 204\cdot 281^{5} + 80\cdot 281^{6} + 6\cdot 281^{7} +O\left(281^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 173 + 66\cdot 281 + 66\cdot 281^{2} + 184\cdot 281^{3} + 62\cdot 281^{4} + 2\cdot 281^{5} + 153\cdot 281^{6} + 63\cdot 281^{7} +O\left(281^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 211 + 90\cdot 281 + 94\cdot 281^{2} + 32\cdot 281^{3} + 95\cdot 281^{4} + 240\cdot 281^{5} + 172\cdot 281^{6} + 231\cdot 281^{7} +O\left(281^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 219 + 268\cdot 281 + 253\cdot 281^{2} + 74\cdot 281^{3} + 237\cdot 281^{4} + 159\cdot 281^{5} + 226\cdot 281^{6} + 148\cdot 281^{7} +O\left(281^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 240 + 135\cdot 281 + 147\cdot 281^{2} + 270\cdot 281^{3} + 166\cdot 281^{4} + 159\cdot 281^{5} + 9\cdot 281^{6} + 118\cdot 281^{7} +O\left(281^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(4,6)(5,8)$
$(1,2,4,3)(5,7,8,6)$
$(1,7,4,6)(2,5,3,8)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,4)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-4$
$2$$2$$(1,4)(6,7)$$0$
$4$$2$$(1,7)(4,6)(5,8)$$0$
$4$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$4$$2$$(1,6)(4,7)(5,8)$$0$
$2$$4$$(1,7,4,6)(2,5,3,8)$$0$
$2$$4$$(1,6,4,7)(2,5,3,8)$$0$
$4$$4$$(1,2,4,3)(5,7,8,6)$$0$
$4$$8$$(1,2,6,8,4,3,7,5)$$0$
$4$$8$$(1,3,7,8,4,2,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.