Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 281 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 25 + 76\cdot 281 + 216\cdot 281^{2} + 165\cdot 281^{3} + 95\cdot 281^{4} + 195\cdot 281^{5} + 37\cdot 281^{6} + 93\cdot 281^{7} +O\left(281^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 44 + 272\cdot 281 + 251\cdot 281^{2} + 149\cdot 281^{3} + 22\cdot 281^{4} + 152\cdot 281^{5} + 56\cdot 281^{6} + 72\cdot 281^{7} +O\left(281^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 88 + 211\cdot 281 + 242\cdot 281^{2} + 23\cdot 281^{3} + 207\cdot 281^{4} + 9\cdot 281^{5} + 106\cdot 281^{6} + 109\cdot 281^{7} +O\left(281^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 124 + 2\cdot 281 + 132\cdot 281^{2} + 222\cdot 281^{3} + 236\cdot 281^{4} + 204\cdot 281^{5} + 80\cdot 281^{6} + 6\cdot 281^{7} +O\left(281^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 173 + 66\cdot 281 + 66\cdot 281^{2} + 184\cdot 281^{3} + 62\cdot 281^{4} + 2\cdot 281^{5} + 153\cdot 281^{6} + 63\cdot 281^{7} +O\left(281^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 211 + 90\cdot 281 + 94\cdot 281^{2} + 32\cdot 281^{3} + 95\cdot 281^{4} + 240\cdot 281^{5} + 172\cdot 281^{6} + 231\cdot 281^{7} +O\left(281^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 219 + 268\cdot 281 + 253\cdot 281^{2} + 74\cdot 281^{3} + 237\cdot 281^{4} + 159\cdot 281^{5} + 226\cdot 281^{6} + 148\cdot 281^{7} +O\left(281^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 240 + 135\cdot 281 + 147\cdot 281^{2} + 270\cdot 281^{3} + 166\cdot 281^{4} + 159\cdot 281^{5} + 9\cdot 281^{6} + 118\cdot 281^{7} +O\left(281^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7)(4,6)(5,8)$ |
| $(1,2,4,3)(5,7,8,6)$ |
| $(1,7,4,6)(2,5,3,8)$ |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(1,4)(6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(6,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(4,6)(5,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,6)(4,7)(5,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,4,6)(2,5,3,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,4,7)(2,5,3,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,4,3)(5,7,8,6)$ |
$0$ |
| $4$ |
$8$ |
$(1,2,6,8,4,3,7,5)$ |
$0$ |
| $4$ |
$8$ |
$(1,3,7,8,4,2,6,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.