Properties

Label 4.2e12_7e2.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$200704= 2^{12} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} - 4 x^{5} + 2 x^{4} - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 20 + 27\cdot 281 + 19\cdot 281^{2} + 18\cdot 281^{3} + 184\cdot 281^{4} + 173\cdot 281^{5} + 71\cdot 281^{6} + 156\cdot 281^{7} + 23\cdot 281^{8} +O\left(281^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 112 + 175\cdot 281 + 194\cdot 281^{2} + 155\cdot 281^{3} + 45\cdot 281^{4} + 269\cdot 281^{5} + 90\cdot 281^{6} + 25\cdot 281^{7} + 225\cdot 281^{8} +O\left(281^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 135 + 224\cdot 281 + 24\cdot 281^{2} + 46\cdot 281^{3} + 23\cdot 281^{4} + 88\cdot 281^{5} + 109\cdot 281^{6} + 253\cdot 281^{7} + 14\cdot 281^{8} +O\left(281^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 164 + 73\cdot 281 + 175\cdot 281^{2} + 219\cdot 281^{3} + 152\cdot 281^{4} + 89\cdot 281^{5} + 226\cdot 281^{6} + 151\cdot 281^{7} + 163\cdot 281^{8} +O\left(281^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 173 + 36\cdot 281 + 161\cdot 281^{2} + 178\cdot 281^{3} + 170\cdot 281^{4} + 17\cdot 281^{5} + 125\cdot 281^{6} + 58\cdot 281^{7} + 219\cdot 281^{8} +O\left(281^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 257 + 41\cdot 281 + 187\cdot 281^{2} + 209\cdot 281^{3} + 161\cdot 281^{4} + 101\cdot 281^{5} + 274\cdot 281^{6} + 40\cdot 281^{7} + 94\cdot 281^{8} +O\left(281^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 266 + 4\cdot 281 + 173\cdot 281^{2} + 168\cdot 281^{3} + 179\cdot 281^{4} + 29\cdot 281^{5} + 173\cdot 281^{6} + 228\cdot 281^{7} + 149\cdot 281^{8} +O\left(281^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 278 + 258\cdot 281 + 188\cdot 281^{2} + 127\cdot 281^{3} + 206\cdot 281^{4} + 73\cdot 281^{5} + 53\cdot 281^{6} + 209\cdot 281^{7} + 233\cdot 281^{8} +O\left(281^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(4,7)(5,6)$
$(1,2)(3,8)(4,7)(5,6)$
$(1,7,8,5,2,4,3,6)$
$(1,4)(2,7)(3,6)(5,8)$
$(1,8,2,3)(4,5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,8)(4,7)(5,6)$$-4$
$2$$2$$(4,7)(5,6)$$0$
$4$$2$$(1,4)(2,7)(3,6)(5,8)$$0$
$4$$2$$(1,2)(4,6)(5,7)$$0$
$4$$2$$(1,3)(2,8)(5,6)$$0$
$2$$4$$(1,8,2,3)(4,5,7,6)$$0$
$2$$4$$(1,3,2,8)(4,5,7,6)$$0$
$4$$4$$(1,7,2,4)(3,5,8,6)$$0$
$4$$8$$(1,6,3,4,2,5,8,7)$$0$
$4$$8$$(1,4,3,5,2,7,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.