Properties

Label 4.2e12_5e4.8t16.2
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{12} \cdot 5^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$2560000= 2^{12} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 10 x^{6} + 40 x^{4} - 80 x^{2} + 80 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 6 + 68\cdot 101 + 91\cdot 101^{2} + 55\cdot 101^{3} + 85\cdot 101^{4} + 98\cdot 101^{5} + 91\cdot 101^{6} + 86\cdot 101^{7} + 43\cdot 101^{8} + 59\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 32 + 93\cdot 101 + 17\cdot 101^{2} + 54\cdot 101^{3} + 9\cdot 101^{4} + 10\cdot 101^{5} + 9\cdot 101^{6} + 91\cdot 101^{7} + 33\cdot 101^{8} + 55\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 38 + 44\cdot 101 + 7\cdot 101^{2} + 33\cdot 101^{3} + 33\cdot 101^{4} + 42\cdot 101^{5} + 15\cdot 101^{6} + 66\cdot 101^{7} + 52\cdot 101^{8} + 4\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 43 + 71\cdot 101 + 40\cdot 101^{2} + 90\cdot 101^{3} + 82\cdot 101^{4} + 8\cdot 101^{5} + 39\cdot 101^{6} + 60\cdot 101^{7} + 98\cdot 101^{8} + 87\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 58 + 29\cdot 101 + 60\cdot 101^{2} + 10\cdot 101^{3} + 18\cdot 101^{4} + 92\cdot 101^{5} + 61\cdot 101^{6} + 40\cdot 101^{7} + 2\cdot 101^{8} + 13\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 63 + 56\cdot 101 + 93\cdot 101^{2} + 67\cdot 101^{3} + 67\cdot 101^{4} + 58\cdot 101^{5} + 85\cdot 101^{6} + 34\cdot 101^{7} + 48\cdot 101^{8} + 96\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 69 + 7\cdot 101 + 83\cdot 101^{2} + 46\cdot 101^{3} + 91\cdot 101^{4} + 90\cdot 101^{5} + 91\cdot 101^{6} + 9\cdot 101^{7} + 67\cdot 101^{8} + 45\cdot 101^{9} +O\left(101^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 95 + 32\cdot 101 + 9\cdot 101^{2} + 45\cdot 101^{3} + 15\cdot 101^{4} + 2\cdot 101^{5} + 9\cdot 101^{6} + 14\cdot 101^{7} + 57\cdot 101^{8} + 41\cdot 101^{9} +O\left(101^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(3,6)(4,5)$
$(1,2)(3,4)(5,6)(7,8)$
$(2,7)(3,6)$
$(1,3,7,5,8,6,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$4$ $2$ $(2,7)(3,6)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
$4$ $8$ $(1,3,7,5,8,6,2,4)$ $0$
$4$ $8$ $(1,5,2,3,8,4,7,6)$ $0$
$4$ $8$ $(1,6,7,5,8,3,2,4)$ $0$
$4$ $8$ $(1,5,2,6,8,4,7,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.