Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 101 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 64\cdot 101 + 44\cdot 101^{2} + 62\cdot 101^{3} + 43\cdot 101^{4} + 10\cdot 101^{5} + 98\cdot 101^{6} + 28\cdot 101^{7} +O\left(101^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 30 + 49\cdot 101 + 45\cdot 101^{2} + 74\cdot 101^{3} + 36\cdot 101^{4} + 52\cdot 101^{5} + 30\cdot 101^{6} + 42\cdot 101^{7} +O\left(101^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 45 + 16\cdot 101 + 83\cdot 101^{2} + 73\cdot 101^{3} + 2\cdot 101^{4} + 15\cdot 101^{5} + 88\cdot 101^{6} + 77\cdot 101^{7} +O\left(101^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 46 + 86\cdot 101 + 97\cdot 101^{2} + 55\cdot 101^{3} + 16\cdot 101^{5} + 22\cdot 101^{6} + 27\cdot 101^{7} +O\left(101^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 55 + 14\cdot 101 + 3\cdot 101^{2} + 45\cdot 101^{3} + 100\cdot 101^{4} + 84\cdot 101^{5} + 78\cdot 101^{6} + 73\cdot 101^{7} +O\left(101^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 56 + 84\cdot 101 + 17\cdot 101^{2} + 27\cdot 101^{3} + 98\cdot 101^{4} + 85\cdot 101^{5} + 12\cdot 101^{6} + 23\cdot 101^{7} +O\left(101^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 71 + 51\cdot 101 + 55\cdot 101^{2} + 26\cdot 101^{3} + 64\cdot 101^{4} + 48\cdot 101^{5} + 70\cdot 101^{6} + 58\cdot 101^{7} +O\left(101^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 98 + 36\cdot 101 + 56\cdot 101^{2} + 38\cdot 101^{3} + 57\cdot 101^{4} + 90\cdot 101^{5} + 2\cdot 101^{6} + 72\cdot 101^{7} +O\left(101^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7,8,2)(3,5,6,4)$ |
| $(3,6)(4,5)$ |
| $(2,7)(3,6)$ |
| $(1,3,7,5,8,6,2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(2,7)(3,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,8)(3,4)(5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,4,6,5)$ |
$0$ |
| $4$ |
$8$ |
$(1,3,7,5,8,6,2,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,5,2,3,8,4,7,6)$ |
$0$ |
| $4$ |
$8$ |
$(1,6,7,5,8,3,2,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,5,2,6,8,4,7,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.