Properties

Label 4.2e12_5e4.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$2560000= 2^{12} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 5 x^{4} - 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 6 + 80\cdot 89 + 78\cdot 89^{2} + 4\cdot 89^{3} + 78\cdot 89^{4} + 40\cdot 89^{5} + 37\cdot 89^{6} + 20\cdot 89^{7} + 36\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 26 + 43\cdot 89 + 64\cdot 89^{2} + 63\cdot 89^{3} + 81\cdot 89^{4} + 15\cdot 89^{5} + 46\cdot 89^{6} + 86\cdot 89^{7} + 46\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 38 + 57\cdot 89 + 47\cdot 89^{2} + 27\cdot 89^{3} + 69\cdot 89^{4} + 23\cdot 89^{5} + 47\cdot 89^{6} + 19\cdot 89^{7} + 74\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 43 + 62\cdot 89 + 61\cdot 89^{2} + 8\cdot 89^{3} + 38\cdot 89^{4} + 24\cdot 89^{5} + 43\cdot 89^{6} + 41\cdot 89^{7} + 72\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 46 + 26\cdot 89 + 27\cdot 89^{2} + 80\cdot 89^{3} + 50\cdot 89^{4} + 64\cdot 89^{5} + 45\cdot 89^{6} + 47\cdot 89^{7} + 16\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 51 + 31\cdot 89 + 41\cdot 89^{2} + 61\cdot 89^{3} + 19\cdot 89^{4} + 65\cdot 89^{5} + 41\cdot 89^{6} + 69\cdot 89^{7} + 14\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 63 + 45\cdot 89 + 24\cdot 89^{2} + 25\cdot 89^{3} + 7\cdot 89^{4} + 73\cdot 89^{5} + 42\cdot 89^{6} + 2\cdot 89^{7} + 42\cdot 89^{8} +O\left(89^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 83 + 8\cdot 89 + 10\cdot 89^{2} + 84\cdot 89^{3} + 10\cdot 89^{4} + 48\cdot 89^{5} + 51\cdot 89^{6} + 68\cdot 89^{7} + 52\cdot 89^{8} +O\left(89^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7)(2,8)(4,5)$
$(1,7,8,2)(3,4,6,5)$
$(1,8)(2,7)$
$(1,6,2,5,8,3,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,8)(2,7)$$0$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$4$$2$$(1,8)(3,4)(5,6)$$0$
$4$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$8$$(1,6,2,5,8,3,7,4)$$0$
$4$$8$$(1,6,7,4,8,3,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.