Properties

Label 4.2e12_5e4.8t15.1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 5^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$2560000= 2^{12} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 15 x^{4} - 50 x^{2} - 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 1 + 24\cdot 89 + 49\cdot 89^{2} + 11\cdot 89^{3} + 44\cdot 89^{4} + 30\cdot 89^{6} + 5\cdot 89^{7} + 89^{8} + 49\cdot 89^{9} + 77\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 12 + 30\cdot 89 + 74\cdot 89^{2} + 55\cdot 89^{3} + 20\cdot 89^{4} + 71\cdot 89^{5} + 42\cdot 89^{6} + 14\cdot 89^{7} + 23\cdot 89^{8} + 70\cdot 89^{9} + 6\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 28 + 42\cdot 89 + 46\cdot 89^{2} + 79\cdot 89^{3} + 35\cdot 89^{4} + 54\cdot 89^{5} + 22\cdot 89^{6} + 32\cdot 89^{7} + 60\cdot 89^{8} + 2\cdot 89^{9} + 61\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 36 + 7\cdot 89 + 65\cdot 89^{2} + 54\cdot 89^{3} + 31\cdot 89^{4} + 22\cdot 89^{5} + 89^{6} + 56\cdot 89^{7} + 30\cdot 89^{8} + 49\cdot 89^{9} + 69\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 53 + 81\cdot 89 + 23\cdot 89^{2} + 34\cdot 89^{3} + 57\cdot 89^{4} + 66\cdot 89^{5} + 87\cdot 89^{6} + 32\cdot 89^{7} + 58\cdot 89^{8} + 39\cdot 89^{9} + 19\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 61 + 46\cdot 89 + 42\cdot 89^{2} + 9\cdot 89^{3} + 53\cdot 89^{4} + 34\cdot 89^{5} + 66\cdot 89^{6} + 56\cdot 89^{7} + 28\cdot 89^{8} + 86\cdot 89^{9} + 27\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 77 + 58\cdot 89 + 14\cdot 89^{2} + 33\cdot 89^{3} + 68\cdot 89^{4} + 17\cdot 89^{5} + 46\cdot 89^{6} + 74\cdot 89^{7} + 65\cdot 89^{8} + 18\cdot 89^{9} + 82\cdot 89^{10} +O\left(89^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 88 + 64\cdot 89 + 39\cdot 89^{2} + 77\cdot 89^{3} + 44\cdot 89^{4} + 88\cdot 89^{5} + 58\cdot 89^{6} + 83\cdot 89^{7} + 87\cdot 89^{8} + 39\cdot 89^{9} + 11\cdot 89^{10} +O\left(89^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,8)(4,5)$
$(1,7,5,3,8,2,4,6)$
$(1,5,8,4)(2,3,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(4,5)$ $0$
$4$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $0$
$4$ $2$ $(1,4)(2,7)(5,8)$ $0$
$4$ $2$ $(2,6)(3,7)(4,5)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
$4$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
$4$ $8$ $(1,6,4,2,8,3,5,7)$ $0$
$4$ $8$ $(1,3,5,2,8,6,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.