Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 31\cdot 61 + 51\cdot 61^{2} + 35\cdot 61^{3} + 43\cdot 61^{4} + 35\cdot 61^{5} + 48\cdot 61^{6} + 60\cdot 61^{7} +O\left(61^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 32\cdot 61 + 7\cdot 61^{2} + 12\cdot 61^{3} + 14\cdot 61^{4} + 60\cdot 61^{5} + 19\cdot 61^{6} + 32\cdot 61^{7} +O\left(61^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 19 + 32\cdot 61 + 45\cdot 61^{2} + 51\cdot 61^{3} + 48\cdot 61^{4} + 21\cdot 61^{5} + 24\cdot 61^{6} + 52\cdot 61^{7} +O\left(61^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 24 + 26\cdot 61 + 17\cdot 61^{2} + 22\cdot 61^{3} + 15\cdot 61^{4} + 4\cdot 61^{5} + 29\cdot 61^{6} + 37\cdot 61^{7} +O\left(61^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 32 + 60\cdot 61 + 35\cdot 61^{2} + 15\cdot 61^{3} + 23\cdot 61^{4} + 20\cdot 61^{5} + 60\cdot 61^{6} + 41\cdot 61^{7} +O\left(61^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 36 + 37\cdot 61 + 23\cdot 61^{2} + 38\cdot 61^{3} + 32\cdot 61^{4} + 49\cdot 61^{5} + 8\cdot 61^{6} + 29\cdot 61^{7} +O\left(61^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 56 + 52\cdot 61 + 26\cdot 61^{2} + 36\cdot 61^{3} + 48\cdot 61^{4} + 22\cdot 61^{5} + 14\cdot 61^{6} + 28\cdot 61^{7} +O\left(61^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 59 + 31\cdot 61 + 35\cdot 61^{2} + 31\cdot 61^{3} + 17\cdot 61^{4} + 29\cdot 61^{5} + 38\cdot 61^{6} + 22\cdot 61^{7} +O\left(61^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(5,8)(6,7)$ |
| $(1,2)(3,4)$ |
| $(1,3)(2,4)(5,6)(7,8)$ |
| $(1,6,3,5)(2,7,4,8)$ |
| $(1,6,2,7)(3,8,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,4)(5,8)(6,7)$ | $-4$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,3)(5,6)(7,8)$ | $0$ |
| $4$ | $2$ | $(1,8)(2,5)(3,6)(4,7)$ | $0$ |
| $4$ | $4$ | $(1,6,2,7)(3,8,4,5)$ | $0$ |
| $4$ | $4$ | $(1,5,3,6)(2,8,4,7)$ | $0$ |
| $4$ | $4$ | $(1,6,3,5)(2,7,4,8)$ | $0$ |
| $4$ | $4$ | $(3,4)(5,7,8,6)$ | $0$ |
| $4$ | $4$ | $(3,4)(5,6,8,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.