Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 421 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 94 + 240\cdot 421 + 139\cdot 421^{2} + 316\cdot 421^{3} + 236\cdot 421^{4} + 135\cdot 421^{5} + 16\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 105 + 13\cdot 421 + 229\cdot 421^{2} + 118\cdot 421^{3} + 226\cdot 421^{4} + 75\cdot 421^{5} + 131\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 161 + 152\cdot 421 + 108\cdot 421^{2} + 363\cdot 421^{3} + 6\cdot 421^{4} + 328\cdot 421^{5} + 85\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 183 + 85\cdot 421 + 378\cdot 421^{2} + 319\cdot 421^{3} + 46\cdot 421^{4} + 344\cdot 421^{5} + 153\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 210 + 306\cdot 421 + 209\cdot 421^{2} + 28\cdot 421^{3} + 405\cdot 421^{4} + 163\cdot 421^{5} + 137\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 232 + 239\cdot 421 + 58\cdot 421^{2} + 406\cdot 421^{3} + 23\cdot 421^{4} + 180\cdot 421^{5} + 205\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 346 + 15\cdot 421 + 25\cdot 421^{2} + 375\cdot 421^{3} + 163\cdot 421^{4} + 258\cdot 421^{5} + 419\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 357 + 209\cdot 421 + 114\cdot 421^{2} + 177\cdot 421^{3} + 153\cdot 421^{4} + 198\cdot 421^{5} + 113\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4,8,5)(2,6,7,3)$ |
| $(1,7)(2,8)(3,5)(4,6)$ |
| $(1,6,7,4)(2,5,8,3)$ |
| $(1,8)(2,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $4$ |
$4$ |
$(1,4,7,6)(2,3,8,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,7,4)(2,5,8,3)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,8,7)(4,5)$ |
$0$ |
| $4$ |
$4$ |
$(1,7,8,2)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.