Properties

Label 4.2e12_5e3.8t21.2
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{12} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$512000= 2^{12} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 12 x^{6} - 20 x^{5} + 22 x^{4} - 16 x^{3} + 8 x^{2} + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 94 + 240\cdot 421 + 139\cdot 421^{2} + 316\cdot 421^{3} + 236\cdot 421^{4} + 135\cdot 421^{5} + 16\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 105 + 13\cdot 421 + 229\cdot 421^{2} + 118\cdot 421^{3} + 226\cdot 421^{4} + 75\cdot 421^{5} + 131\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 161 + 152\cdot 421 + 108\cdot 421^{2} + 363\cdot 421^{3} + 6\cdot 421^{4} + 328\cdot 421^{5} + 85\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 183 + 85\cdot 421 + 378\cdot 421^{2} + 319\cdot 421^{3} + 46\cdot 421^{4} + 344\cdot 421^{5} + 153\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 210 + 306\cdot 421 + 209\cdot 421^{2} + 28\cdot 421^{3} + 405\cdot 421^{4} + 163\cdot 421^{5} + 137\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 232 + 239\cdot 421 + 58\cdot 421^{2} + 406\cdot 421^{3} + 23\cdot 421^{4} + 180\cdot 421^{5} + 205\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 346 + 15\cdot 421 + 25\cdot 421^{2} + 375\cdot 421^{3} + 163\cdot 421^{4} + 258\cdot 421^{5} + 419\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 357 + 209\cdot 421 + 114\cdot 421^{2} + 177\cdot 421^{3} + 153\cdot 421^{4} + 198\cdot 421^{5} + 113\cdot 421^{6} +O\left(421^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,6,7,4)(2,5,8,3)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $2$ $(1,8)(2,7)$ $0$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$4$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$4$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$4$ $4$ $(1,4,7,6)(2,3,8,5)$ $0$
$4$ $4$ $(1,6,7,4)(2,5,8,3)$ $0$
$4$ $4$ $(1,2,8,7)(4,5)$ $0$
$4$ $4$ $(1,7,8,2)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.