Properties

Label 4.2e12_5e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$102400= 2^{12} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{4} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 521 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 56 + 142\cdot 521 + 414\cdot 521^{2} + 159\cdot 521^{3} + 94\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 135 + 433\cdot 521 + 189\cdot 521^{2} + 75\cdot 521^{3} + 260\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 176 + 494\cdot 521 + 178\cdot 521^{2} + 111\cdot 521^{3} + 453\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 201 + 219\cdot 521 + 200\cdot 521^{2} + 334\cdot 521^{3} + 160\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 320 + 301\cdot 521 + 320\cdot 521^{2} + 186\cdot 521^{3} + 360\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 345 + 26\cdot 521 + 342\cdot 521^{2} + 409\cdot 521^{3} + 67\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 386 + 87\cdot 521 + 331\cdot 521^{2} + 445\cdot 521^{3} + 260\cdot 521^{4} +O\left(521^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 465 + 378\cdot 521 + 106\cdot 521^{2} + 361\cdot 521^{3} + 426\cdot 521^{4} +O\left(521^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,4,7,6,8,5,2,3)$
$(1,7,8,2)(3,5,6,4)$
$(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(2,7)(3,5)(4,6)$ $0$
$4$ $2$ $(1,7)(2,8)(3,6)$ $0$
$4$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$4$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
$4$ $8$ $(1,4,7,6,8,5,2,3)$ $0$
$4$ $8$ $(1,6,7,5,8,3,2,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.