Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 521 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 58 + 453\cdot 521 + 284\cdot 521^{2} + 103\cdot 521^{3} + 311\cdot 521^{4} + 314\cdot 521^{5} + 191\cdot 521^{6} +O\left(521^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 90 + 200\cdot 521 + 257\cdot 521^{2} + 57\cdot 521^{3} + 402\cdot 521^{4} + 280\cdot 521^{5} + 324\cdot 521^{6} +O\left(521^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 184 + 227\cdot 521 + 194\cdot 521^{2} + 94\cdot 521^{3} + 228\cdot 521^{4} + 106\cdot 521^{5} + 146\cdot 521^{6} +O\left(521^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 191 + 497\cdot 521 + 360\cdot 521^{2} + 143\cdot 521^{3} + 104\cdot 521^{4} + 125\cdot 521^{5} + 301\cdot 521^{6} +O\left(521^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 330 + 23\cdot 521 + 160\cdot 521^{2} + 377\cdot 521^{3} + 416\cdot 521^{4} + 395\cdot 521^{5} + 219\cdot 521^{6} +O\left(521^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 337 + 293\cdot 521 + 326\cdot 521^{2} + 426\cdot 521^{3} + 292\cdot 521^{4} + 414\cdot 521^{5} + 374\cdot 521^{6} +O\left(521^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 431 + 320\cdot 521 + 263\cdot 521^{2} + 463\cdot 521^{3} + 118\cdot 521^{4} + 240\cdot 521^{5} + 196\cdot 521^{6} +O\left(521^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 463 + 67\cdot 521 + 236\cdot 521^{2} + 417\cdot 521^{3} + 209\cdot 521^{4} + 206\cdot 521^{5} + 329\cdot 521^{6} +O\left(521^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(3,6)(4,5)$ |
| $(2,7)(3,5)(4,6)$ |
| $(1,3,7,5,8,6,2,4)$ |
| $(1,2,8,7)(3,4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(2,7)(3,5)(4,6)$ |
$0$ |
| $4$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$0$ |
| $4$ |
$2$ |
$(2,7)(3,4)(5,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,8,4)(2,6,7,3)$ |
$0$ |
| $4$ |
$8$ |
$(1,3,7,5,8,6,2,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,6,2,5,8,3,7,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.