Properties

Label 4.2e12_5e2.8t15.1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$102400= 2^{12} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 5 x^{4} - 2 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 521 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 58 + 453\cdot 521 + 284\cdot 521^{2} + 103\cdot 521^{3} + 311\cdot 521^{4} + 314\cdot 521^{5} + 191\cdot 521^{6} +O\left(521^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 90 + 200\cdot 521 + 257\cdot 521^{2} + 57\cdot 521^{3} + 402\cdot 521^{4} + 280\cdot 521^{5} + 324\cdot 521^{6} +O\left(521^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 184 + 227\cdot 521 + 194\cdot 521^{2} + 94\cdot 521^{3} + 228\cdot 521^{4} + 106\cdot 521^{5} + 146\cdot 521^{6} +O\left(521^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 191 + 497\cdot 521 + 360\cdot 521^{2} + 143\cdot 521^{3} + 104\cdot 521^{4} + 125\cdot 521^{5} + 301\cdot 521^{6} +O\left(521^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 330 + 23\cdot 521 + 160\cdot 521^{2} + 377\cdot 521^{3} + 416\cdot 521^{4} + 395\cdot 521^{5} + 219\cdot 521^{6} +O\left(521^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 337 + 293\cdot 521 + 326\cdot 521^{2} + 426\cdot 521^{3} + 292\cdot 521^{4} + 414\cdot 521^{5} + 374\cdot 521^{6} +O\left(521^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 431 + 320\cdot 521 + 263\cdot 521^{2} + 463\cdot 521^{3} + 118\cdot 521^{4} + 240\cdot 521^{5} + 196\cdot 521^{6} +O\left(521^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 463 + 67\cdot 521 + 236\cdot 521^{2} + 417\cdot 521^{3} + 209\cdot 521^{4} + 206\cdot 521^{5} + 329\cdot 521^{6} +O\left(521^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(3,6)(4,5)$
$(2,7)(3,5)(4,6)$
$(1,3,7,5,8,6,2,4)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(2,7)(3,5)(4,6)$ $0$
$4$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$
$4$ $2$ $(2,7)(3,4)(5,6)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$4$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$
$4$ $8$ $(1,3,7,5,8,6,2,4)$ $0$
$4$ $8$ $(1,6,2,5,8,3,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.