Properties

Label 4.2e12_3e5.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{12} \cdot 3^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$995328= 2^{12} \cdot 3^{5} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} - 4 x^{3} - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.2e2_3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 28 + 89\cdot 97 + 96\cdot 97^{2} + 63\cdot 97^{3} + 62\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 a + 57 + \left(68 a + 7\right)\cdot 97 + \left(45 a + 96\right)\cdot 97^{2} + \left(77 a + 52\right)\cdot 97^{3} + \left(86 a + 65\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 82 + 17\cdot 97 + 75\cdot 97^{2} + 84\cdot 97^{3} + 48\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 55 a + 2 + \left(28 a + 34\right)\cdot 97 + \left(51 a + 73\right)\cdot 97^{2} + \left(19 a + 84\right)\cdot 97^{3} + \left(10 a + 74\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 95 + \left(68 a + 2\right)\cdot 97 + \left(4 a + 55\right)\cdot 97^{2} + \left(6 a + 1\right)\cdot 97^{3} + \left(48 a + 47\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 68 a + 27 + \left(28 a + 42\right)\cdot 97 + \left(92 a + 88\right)\cdot 97^{2} + \left(90 a + 2\right)\cdot 97^{3} + \left(48 a + 89\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,5)(4,6)$$-2$
$6$$2$$(2,4)$$0$
$9$$2$$(2,4)(5,6)$$0$
$4$$3$$(1,2,4)$$-2$
$4$$3$$(1,2,4)(3,5,6)$$1$
$18$$4$$(1,3)(2,6,4,5)$$0$
$12$$6$$(1,5,2,6,4,3)$$1$
$12$$6$$(2,4)(3,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.