Properties

Label 4.2e12_3e4.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 3^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$331776= 2^{12} \cdot 3^{4} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{4} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 433 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 264\cdot 433 + 109\cdot 433^{2} + 287\cdot 433^{3} + 162\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 + 341\cdot 433 + 239\cdot 433^{2} + 20\cdot 433^{3} + 427\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 + 135\cdot 433 + 212\cdot 433^{2} + 356\cdot 433^{3} + 117\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 65 + 180\cdot 433 + 180\cdot 433^{2} + 205\cdot 433^{3} + 352\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 368 + 252\cdot 433 + 252\cdot 433^{2} + 227\cdot 433^{3} + 80\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 377 + 297\cdot 433 + 220\cdot 433^{2} + 76\cdot 433^{3} + 315\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 387 + 91\cdot 433 + 193\cdot 433^{2} + 412\cdot 433^{3} + 5\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 426 + 168\cdot 433 + 323\cdot 433^{2} + 145\cdot 433^{3} + 270\cdot 433^{4} +O\left(433^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7)(2,8)(4,5)$
$(1,7,8,2)(3,4,6,5)$
$(1,8)(2,7)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(2,7)$ $0$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$
$4$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$4$ $2$ $(1,2)(4,5)(7,8)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
$4$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$
$4$ $8$ $(1,6,2,4,8,3,7,5)$ $0$
$4$ $8$ $(1,3,7,4,8,6,2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.