Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 34 + 93\cdot 337^{2} + 186\cdot 337^{3} + 308\cdot 337^{4} + 267\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 162 + 194\cdot 337 + 297\cdot 337^{2} + 257\cdot 337^{3} + 3\cdot 337^{4} + 313\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 176 + 14\cdot 337 + 121\cdot 337^{2} + 125\cdot 337^{3} + 239\cdot 337^{4} + 183\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 184 + 29\cdot 337 + 256\cdot 337^{2} + 247\cdot 337^{3} + 40\cdot 337^{4} + 320\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 224 + 322\cdot 337 + 294\cdot 337^{2} + 38\cdot 337^{3} + 64\cdot 337^{4} + 178\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 294 + 112\cdot 337 + 27\cdot 337^{2} + 319\cdot 337^{3} + 320\cdot 337^{4} + 109\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 302 + 127\cdot 337 + 162\cdot 337^{2} + 104\cdot 337^{3} + 122\cdot 337^{4} + 246\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 309 + 208\cdot 337 + 95\cdot 337^{2} + 68\cdot 337^{3} + 248\cdot 337^{4} + 65\cdot 337^{5} +O\left(337^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,6)(3,5)(7,8)$ |
| $(1,7)(2,3)(4,5)(6,8)$ |
| $(1,3)(2,7)(4,5)(6,8)$ |
| $(1,2)(3,7)$ |
| $(1,7,2,3)(4,8,6,5)$ |
| $(1,7,2,3)(4,5,6,8)$ |
| $(1,4)(2,6)(3,8)(5,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,7)(4,6)(5,8)$ | $-4$ |
| $2$ | $2$ | $(1,4)(2,6)(3,5)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,3)(4,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,8)(3,4)(6,7)$ | $0$ |
| $2$ | $2$ | $(1,2)(4,6)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,7)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,7)(4,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(3,7)(4,6)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,6)(3,8)(5,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,8)(3,6)(4,7)$ | $0$ |
| $2$ | $4$ | $(1,7,2,3)(4,8,6,5)$ | $0$ |
| $2$ | $4$ | $(1,5,2,8)(3,4,7,6)$ | $0$ |
| $2$ | $4$ | $(1,4,2,6)(3,5,7,8)$ | $0$ |
| $2$ | $4$ | $(1,3,2,7)(4,8,6,5)$ | $0$ |
| $2$ | $4$ | $(1,5,2,8)(3,6,7,4)$ | $0$ |
| $2$ | $4$ | $(1,4,2,6)(3,8,7,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.