Properties

Label 4.2e12_3e2_7e2.8t15.6c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 3^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1806336= 2^{12} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} + 8 x^{6} + 20 x^{4} + 16 x^{2} + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 13 + 194\cdot 199 + 117\cdot 199^{2} + 84\cdot 199^{3} + 171\cdot 199^{4} + 187\cdot 199^{5} + 124\cdot 199^{6} + 102\cdot 199^{7} + 145\cdot 199^{8} +O\left(199^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 15 + 190\cdot 199 + 79\cdot 199^{2} + 133\cdot 199^{3} + 51\cdot 199^{4} + 117\cdot 199^{5} + 129\cdot 199^{6} + 88\cdot 199^{7} + 49\cdot 199^{8} +O\left(199^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 20 + 149\cdot 199 + 144\cdot 199^{2} + 109\cdot 199^{3} + 19\cdot 199^{4} + 188\cdot 199^{5} + 5\cdot 199^{6} + 184\cdot 199^{7} + 82\cdot 199^{8} +O\left(199^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 81 + 119\cdot 199 + 163\cdot 199^{2} + 55\cdot 199^{3} + 75\cdot 199^{4} + 137\cdot 199^{5} + 39\cdot 199^{6} + 153\cdot 199^{7} + 128\cdot 199^{8} +O\left(199^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 118 + 79\cdot 199 + 35\cdot 199^{2} + 143\cdot 199^{3} + 123\cdot 199^{4} + 61\cdot 199^{5} + 159\cdot 199^{6} + 45\cdot 199^{7} + 70\cdot 199^{8} +O\left(199^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 179 + 49\cdot 199 + 54\cdot 199^{2} + 89\cdot 199^{3} + 179\cdot 199^{4} + 10\cdot 199^{5} + 193\cdot 199^{6} + 14\cdot 199^{7} + 116\cdot 199^{8} +O\left(199^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 184 + 8\cdot 199 + 119\cdot 199^{2} + 65\cdot 199^{3} + 147\cdot 199^{4} + 81\cdot 199^{5} + 69\cdot 199^{6} + 110\cdot 199^{7} + 149\cdot 199^{8} +O\left(199^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 186 + 4\cdot 199 + 81\cdot 199^{2} + 114\cdot 199^{3} + 27\cdot 199^{4} + 11\cdot 199^{5} + 74\cdot 199^{6} + 96\cdot 199^{7} + 53\cdot 199^{8} +O\left(199^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,6)(3,7)(5,8)$
$(1,8)(2,7)$
$(1,2,8,7)(3,4,6,5)$
$(1,3,7,4,8,6,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,8)(2,7)$$0$
$4$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$4$$2$$(2,7)(3,4)(5,6)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$8$$(1,5,2,6,8,4,7,3)$$0$
$4$$8$$(1,4,7,6,8,5,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.