Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 199 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 48\cdot 199 + 186\cdot 199^{2} + 79\cdot 199^{3} + 168\cdot 199^{4} + 47\cdot 199^{5} + 173\cdot 199^{6} + 106\cdot 199^{7} +O\left(199^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 57 + 150\cdot 199 + 24\cdot 199^{2} + 35\cdot 199^{3} + 121\cdot 199^{4} + 177\cdot 199^{5} + 14\cdot 199^{6} + 156\cdot 199^{7} +O\left(199^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 67 + 177\cdot 199 + 187\cdot 199^{2} + 14\cdot 199^{3} + 141\cdot 199^{4} + 62\cdot 199^{5} + 43\cdot 199^{6} + 124\cdot 199^{7} +O\left(199^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 74 + 81\cdot 199 + 22\cdot 199^{2} + 145\cdot 199^{3} + 190\cdot 199^{4} + 142\cdot 199^{5} + 61\cdot 199^{6} + 10\cdot 199^{7} +O\left(199^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 125 + 117\cdot 199 + 176\cdot 199^{2} + 53\cdot 199^{3} + 8\cdot 199^{4} + 56\cdot 199^{5} + 137\cdot 199^{6} + 188\cdot 199^{7} +O\left(199^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 132 + 21\cdot 199 + 11\cdot 199^{2} + 184\cdot 199^{3} + 57\cdot 199^{4} + 136\cdot 199^{5} + 155\cdot 199^{6} + 74\cdot 199^{7} +O\left(199^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 142 + 48\cdot 199 + 174\cdot 199^{2} + 163\cdot 199^{3} + 77\cdot 199^{4} + 21\cdot 199^{5} + 184\cdot 199^{6} + 42\cdot 199^{7} +O\left(199^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 188 + 150\cdot 199 + 12\cdot 199^{2} + 119\cdot 199^{3} + 30\cdot 199^{4} + 151\cdot 199^{5} + 25\cdot 199^{6} + 92\cdot 199^{7} +O\left(199^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,6,8,3)(2,4,7,5)$ |
| $(1,7,8,2)(3,5,6,4)$ |
| $(1,7)(2,8)(4,5)$ |
| $(1,8)(2,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(1,8)(2,7)$ | $0$ |
| $4$ | $2$ | $(1,7)(2,8)(4,5)$ | $0$ |
| $4$ | $2$ | $(1,3)(2,5)(4,7)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,2)(4,5)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $0$ |
| $2$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $0$ |
| $4$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $0$ |
| $4$ | $8$ | $(1,6,2,5,8,3,7,4)$ | $0$ |
| $4$ | $8$ | $(1,3,7,5,8,6,2,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.