Properties

Label 4.2e12_3e2_7e2.8t15.5c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 3^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1806336= 2^{12} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} - x^{4} + 8 x^{2} + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 199 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 11 + 48\cdot 199 + 186\cdot 199^{2} + 79\cdot 199^{3} + 168\cdot 199^{4} + 47\cdot 199^{5} + 173\cdot 199^{6} + 106\cdot 199^{7} +O\left(199^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 57 + 150\cdot 199 + 24\cdot 199^{2} + 35\cdot 199^{3} + 121\cdot 199^{4} + 177\cdot 199^{5} + 14\cdot 199^{6} + 156\cdot 199^{7} +O\left(199^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 67 + 177\cdot 199 + 187\cdot 199^{2} + 14\cdot 199^{3} + 141\cdot 199^{4} + 62\cdot 199^{5} + 43\cdot 199^{6} + 124\cdot 199^{7} +O\left(199^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 74 + 81\cdot 199 + 22\cdot 199^{2} + 145\cdot 199^{3} + 190\cdot 199^{4} + 142\cdot 199^{5} + 61\cdot 199^{6} + 10\cdot 199^{7} +O\left(199^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 125 + 117\cdot 199 + 176\cdot 199^{2} + 53\cdot 199^{3} + 8\cdot 199^{4} + 56\cdot 199^{5} + 137\cdot 199^{6} + 188\cdot 199^{7} +O\left(199^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 132 + 21\cdot 199 + 11\cdot 199^{2} + 184\cdot 199^{3} + 57\cdot 199^{4} + 136\cdot 199^{5} + 155\cdot 199^{6} + 74\cdot 199^{7} +O\left(199^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 142 + 48\cdot 199 + 174\cdot 199^{2} + 163\cdot 199^{3} + 77\cdot 199^{4} + 21\cdot 199^{5} + 184\cdot 199^{6} + 42\cdot 199^{7} +O\left(199^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 188 + 150\cdot 199 + 12\cdot 199^{2} + 119\cdot 199^{3} + 30\cdot 199^{4} + 151\cdot 199^{5} + 25\cdot 199^{6} + 92\cdot 199^{7} +O\left(199^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,8,3)(2,4,7,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,7)(2,8)(4,5)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,8)(2,7)$$0$
$4$$2$$(1,7)(2,8)(4,5)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$4$$2$$(1,2)(4,5)(7,8)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$8$$(1,6,2,5,8,3,7,4)$$0$
$4$$8$$(1,3,7,5,8,6,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.