Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 32 + 15\cdot 337 + 150\cdot 337^{2} + 292\cdot 337^{3} + 16\cdot 337^{4} + 272\cdot 337^{5} + 294\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 49 + 168\cdot 337 + 156\cdot 337^{2} + 233\cdot 337^{3} + 30\cdot 337^{4} + 96\cdot 337^{5} + 290\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 68 + 304\cdot 337 + 38\cdot 337^{2} + 294\cdot 337^{3} + 21\cdot 337^{4} + 68\cdot 337^{5} + 256\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 126 + 268\cdot 337 + 147\cdot 337^{2} + 180\cdot 337^{3} + 72\cdot 337^{4} + 237\cdot 337^{5} + 253\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 211 + 68\cdot 337 + 189\cdot 337^{2} + 156\cdot 337^{3} + 264\cdot 337^{4} + 99\cdot 337^{5} + 83\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 269 + 32\cdot 337 + 298\cdot 337^{2} + 42\cdot 337^{3} + 315\cdot 337^{4} + 268\cdot 337^{5} + 80\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 288 + 168\cdot 337 + 180\cdot 337^{2} + 103\cdot 337^{3} + 306\cdot 337^{4} + 240\cdot 337^{5} + 46\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 305 + 321\cdot 337 + 186\cdot 337^{2} + 44\cdot 337^{3} + 320\cdot 337^{4} + 64\cdot 337^{5} + 42\cdot 337^{6} +O\left(337^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,3,4,8,7,6,5)$ |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(2,7)(4,5)$ |
| $(1,8)(2,5)(4,7)$ |
| $(1,3,8,6)(2,5,7,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(2,7)(4,5)$ | $0$ |
| $4$ | $2$ | $(1,8)(2,5)(4,7)$ | $0$ |
| $4$ | $2$ | $(1,6)(2,7)(3,8)$ | $0$ |
| $4$ | $2$ | $(1,2)(3,5)(4,6)(7,8)$ | $0$ |
| $2$ | $4$ | $(1,3,8,6)(2,4,7,5)$ | $0$ |
| $2$ | $4$ | $(1,3,8,6)(2,5,7,4)$ | $0$ |
| $4$ | $4$ | $(1,5,8,4)(2,3,7,6)$ | $0$ |
| $4$ | $8$ | $(1,2,3,4,8,7,6,5)$ | $0$ |
| $4$ | $8$ | $(1,7,6,4,8,2,3,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.