Properties

Label 4.2e12_3e2_7e2.8t15.4c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 3^{2} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1806336= 2^{12} \cdot 3^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} - x^{4} - 8 x^{2} + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 32 + 15\cdot 337 + 150\cdot 337^{2} + 292\cdot 337^{3} + 16\cdot 337^{4} + 272\cdot 337^{5} + 294\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 49 + 168\cdot 337 + 156\cdot 337^{2} + 233\cdot 337^{3} + 30\cdot 337^{4} + 96\cdot 337^{5} + 290\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 68 + 304\cdot 337 + 38\cdot 337^{2} + 294\cdot 337^{3} + 21\cdot 337^{4} + 68\cdot 337^{5} + 256\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 126 + 268\cdot 337 + 147\cdot 337^{2} + 180\cdot 337^{3} + 72\cdot 337^{4} + 237\cdot 337^{5} + 253\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 211 + 68\cdot 337 + 189\cdot 337^{2} + 156\cdot 337^{3} + 264\cdot 337^{4} + 99\cdot 337^{5} + 83\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 269 + 32\cdot 337 + 298\cdot 337^{2} + 42\cdot 337^{3} + 315\cdot 337^{4} + 268\cdot 337^{5} + 80\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 288 + 168\cdot 337 + 180\cdot 337^{2} + 103\cdot 337^{3} + 306\cdot 337^{4} + 240\cdot 337^{5} + 46\cdot 337^{6} +O\left(337^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 305 + 321\cdot 337 + 186\cdot 337^{2} + 44\cdot 337^{3} + 320\cdot 337^{4} + 64\cdot 337^{5} + 42\cdot 337^{6} +O\left(337^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4,8,7,6,5)$
$(1,8)(2,7)(3,6)(4,5)$
$(2,7)(4,5)$
$(1,8)(2,5)(4,7)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(1,8)(2,5)(4,7)$$0$
$4$$2$$(1,6)(2,7)(3,8)$$0$
$4$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$4$$4$$(1,5,8,4)(2,3,7,6)$$0$
$4$$8$$(1,2,3,4,8,7,6,5)$$0$
$4$$8$$(1,7,6,4,8,2,3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.