Properties

Label 4.2e12_3e2_5e2.8t22.16
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{12} \cdot 3^{2} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$921600= 2^{12} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} + 33 x^{4} - 50 x^{2} + 25 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 769 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 26 + 666\cdot 769 + 247\cdot 769^{2} + 606\cdot 769^{3} + 263\cdot 769^{4} +O\left(769^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 309\cdot 769 + 367\cdot 769^{2} + 228\cdot 769^{3} + 462\cdot 769^{4} +O\left(769^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 50 + 54\cdot 769 + 236\cdot 769^{2} + 425\cdot 769^{3} + 255\cdot 769^{4} +O\left(769^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 284 + 332\cdot 769 + 64\cdot 769^{2} + 674\cdot 769^{3} + 200\cdot 769^{4} +O\left(769^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 485 + 436\cdot 769 + 704\cdot 769^{2} + 94\cdot 769^{3} + 568\cdot 769^{4} +O\left(769^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 719 + 714\cdot 769 + 532\cdot 769^{2} + 343\cdot 769^{3} + 513\cdot 769^{4} +O\left(769^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 721 + 459\cdot 769 + 401\cdot 769^{2} + 540\cdot 769^{3} + 306\cdot 769^{4} +O\left(769^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 743 + 102\cdot 769 + 521\cdot 769^{2} + 162\cdot 769^{3} + 505\cdot 769^{4} +O\left(769^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(3,6)(4,5)$
$(2,7)(4,5)$
$(1,5)(2,3)(4,8)(6,7)$
$(1,8)(4,5)$
$(1,3)(2,4)(5,7)(6,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $2$ $(3,6)(4,5)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,8)(4,5)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $2$ $(1,8)(3,6)$ $0$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.