Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 769 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 26 + 666\cdot 769 + 247\cdot 769^{2} + 606\cdot 769^{3} + 263\cdot 769^{4} +O\left(769^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 48 + 309\cdot 769 + 367\cdot 769^{2} + 228\cdot 769^{3} + 462\cdot 769^{4} +O\left(769^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 50 + 54\cdot 769 + 236\cdot 769^{2} + 425\cdot 769^{3} + 255\cdot 769^{4} +O\left(769^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 284 + 332\cdot 769 + 64\cdot 769^{2} + 674\cdot 769^{3} + 200\cdot 769^{4} +O\left(769^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 485 + 436\cdot 769 + 704\cdot 769^{2} + 94\cdot 769^{3} + 568\cdot 769^{4} +O\left(769^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 719 + 714\cdot 769 + 532\cdot 769^{2} + 343\cdot 769^{3} + 513\cdot 769^{4} +O\left(769^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 721 + 459\cdot 769 + 401\cdot 769^{2} + 540\cdot 769^{3} + 306\cdot 769^{4} +O\left(769^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 743 + 102\cdot 769 + 521\cdot 769^{2} + 162\cdot 769^{3} + 505\cdot 769^{4} +O\left(769^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(3,6)(4,5)$ |
| $(2,7)(4,5)$ |
| $(1,5)(2,3)(4,8)(6,7)$ |
| $(1,8)(4,5)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(1,3)(2,5)(4,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,4)(5,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(3,6)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,6)(2,4)(3,8)(5,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,4)(2,3,7,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,4,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,3)(2,4,7,5)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,5)(2,3,7,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,4,6,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.