Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 769 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 52\cdot 769 + 394\cdot 769^{2} + 194\cdot 769^{3} + 463\cdot 769^{4} + 354\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 123 + 529\cdot 769 + 649\cdot 769^{2} + 543\cdot 769^{3} + 625\cdot 769^{4} + 733\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 166 + 185\cdot 769 + 494\cdot 769^{2} + 494\cdot 769^{3} + 29\cdot 769^{4} + 16\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 267 + 425\cdot 769 + 318\cdot 769^{2} + 397\cdot 769^{3} + 690\cdot 769^{4} + 457\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 309 + 320\cdot 769 + 149\cdot 769^{2} + 590\cdot 769^{3} + 525\cdot 769^{4} + 312\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 327 + 636\cdot 769 + 344\cdot 769^{2} + 209\cdot 769^{3} + 692\cdot 769^{4} + 136\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 369 + 531\cdot 769 + 175\cdot 769^{2} + 402\cdot 769^{3} + 527\cdot 769^{4} + 760\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 736 + 395\cdot 769 + 549\cdot 769^{2} + 243\cdot 769^{3} + 290\cdot 769^{4} + 303\cdot 769^{5} +O\left(769^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(3,8)$ |
| $(3,8)(5,6)$ |
| $(1,5)(2,6)(3,4)(7,8)$ |
| $(1,4)(2,7)(3,5)(6,8)$ |
| $(1,5)(2,6)(3,7)(4,8)$ |
| $(1,4)(2,7)(3,6)(5,8)$ |
| $(3,8)(4,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ | $-4$ |
| $2$ | $2$ | $(1,2)(3,8)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,4)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,7)(3,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,8)(4,5)(6,7)$ | $0$ |
| $2$ | $2$ | $(3,8)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,2)(4,7)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $0$ |
| $2$ | $2$ | $(1,7)(2,4)(3,5)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,3)(4,5)(6,7)$ | $0$ |
| $2$ | $4$ | $(1,6,2,5)(3,7,8,4)$ | $0$ |
| $2$ | $4$ | $(1,7,2,4)(3,6,8,5)$ | $0$ |
| $2$ | $4$ | $(1,8,2,3)(4,6,7,5)$ | $0$ |
| $2$ | $4$ | $(1,4,2,7)(3,6,8,5)$ | $0$ |
| $2$ | $4$ | $(1,6,2,5)(3,4,8,7)$ | $0$ |
| $2$ | $4$ | $(1,3,2,8)(4,6,7,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.