Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 241 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 10\cdot 241 + 80\cdot 241^{2} + 95\cdot 241^{3} + 94\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 43 + 194\cdot 241 + 168\cdot 241^{2} + 85\cdot 241^{3} + 39\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 85 + 66\cdot 241 + 234\cdot 241^{2} + 212\cdot 241^{3} + 220\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 119 + 95\cdot 241 + 77\cdot 241^{2} + 39\cdot 241^{3} + 114\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 122 + 145\cdot 241 + 163\cdot 241^{2} + 201\cdot 241^{3} + 126\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 156 + 174\cdot 241 + 6\cdot 241^{2} + 28\cdot 241^{3} + 20\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 198 + 46\cdot 241 + 72\cdot 241^{2} + 155\cdot 241^{3} + 201\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 229 + 230\cdot 241 + 160\cdot 241^{2} + 145\cdot 241^{3} + 146\cdot 241^{4} +O\left(241^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,3)(5,8)(6,7)$ |
| $(2,7)(4,5)$ |
| $(3,6)(4,5)$ |
| $(1,5)(2,3)(4,8)(6,7)$ |
| $(1,8)(4,5)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,5)(2,3)(4,8)(6,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(2,7)(4,5)$ |
$0$ |
| $2$ |
$2$ |
$(1,8)(2,7)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,5)(4,7)(6,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,7)(2,8)(3,5)(4,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,3)(2,5,7,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,4)(2,6,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,6,8,3)(2,4,7,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.