Properties

Label 4.2e12_3e2_5e2.8t22.10c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{12} \cdot 3^{2} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$921600= 2^{12} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{6} + 13 x^{4} - 18 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 409 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 30 + 353\cdot 409 + 252\cdot 409^{2} + 199\cdot 409^{3} + 383\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 90 + 14\cdot 409 + 238\cdot 409^{2} + 285\cdot 409^{3} + 333\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 133 + 26\cdot 409 + 206\cdot 409^{2} + 273\cdot 409^{3} + 364\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 203 + 172\cdot 409 + 330\cdot 409^{2} + 219\cdot 409^{3} + 186\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 206 + 236\cdot 409 + 78\cdot 409^{2} + 189\cdot 409^{3} + 222\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 276 + 382\cdot 409 + 202\cdot 409^{2} + 135\cdot 409^{3} + 44\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 319 + 394\cdot 409 + 170\cdot 409^{2} + 123\cdot 409^{3} + 75\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 379 + 55\cdot 409 + 156\cdot 409^{2} + 209\cdot 409^{3} + 25\cdot 409^{4} +O\left(409^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(2,7)(4,5)$
$(3,6)(4,5)$
$(1,5)(2,3)(4,8)(6,7)$
$(1,8)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(3,6)(4,5)$$0$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,8)(4,5)$$0$
$2$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$2$$2$$(1,8)(3,6)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.