Properties

Label 4.921600.8t22.l
Dimension $4$
Group $Q_8:C_2^2$
Conductor $921600$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$4$
Group:$Q_8:C_2^2$
Conductor:\(921600\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 5^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.368640000.2
Galois orbit size: $1$
Smallest permutation container: $Q_8:C_2^2$
Parity: even
Projective image: $C_2^4$
Projective field: Galois closure of 16.0.11007531417600000000.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 409 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 30 + 353\cdot 409 + 252\cdot 409^{2} + 199\cdot 409^{3} + 383\cdot 409^{4} +O(409^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 90 + 14\cdot 409 + 238\cdot 409^{2} + 285\cdot 409^{3} + 333\cdot 409^{4} +O(409^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 133 + 26\cdot 409 + 206\cdot 409^{2} + 273\cdot 409^{3} + 364\cdot 409^{4} +O(409^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 203 + 172\cdot 409 + 330\cdot 409^{2} + 219\cdot 409^{3} + 186\cdot 409^{4} +O(409^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 206 + 236\cdot 409 + 78\cdot 409^{2} + 189\cdot 409^{3} + 222\cdot 409^{4} +O(409^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 276 + 382\cdot 409 + 202\cdot 409^{2} + 135\cdot 409^{3} + 44\cdot 409^{4} +O(409^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 319 + 394\cdot 409 + 170\cdot 409^{2} + 123\cdot 409^{3} + 75\cdot 409^{4} +O(409^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 379 + 55\cdot 409 + 156\cdot 409^{2} + 209\cdot 409^{3} + 25\cdot 409^{4} +O(409^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(2,7)(4,5)$
$(3,6)(4,5)$
$(1,5)(2,3)(4,8)(6,7)$
$(1,8)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $2$ $(3,6)(4,5)$ $0$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,8)(4,5)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $2$ $(1,8)(3,6)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.