Properties

Label 4.2e12_3e2_11e2.8t22.5c1
Dimension 4
Group $C_2^3 : D_4 $
Conductor $ 2^{12} \cdot 3^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : D_4 $
Conductor:$4460544= 2^{12} \cdot 3^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 10 x^{6} + 50 x^{4} - 110 x^{2} + 121 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3 : D_4 $
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 18\cdot 97 + 70\cdot 97^{2} + 57\cdot 97^{3} + 45\cdot 97^{4} + 2\cdot 97^{5} + 72\cdot 97^{6} +O\left(97^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 30 + 94\cdot 97 + 65\cdot 97^{2} + 57\cdot 97^{3} + 66\cdot 97^{4} + 24\cdot 97^{5} + 34\cdot 97^{6} +O\left(97^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 31 + 18\cdot 97 + 83\cdot 97^{2} + 74\cdot 97^{3} + 25\cdot 97^{4} + 28\cdot 97^{5} + 96\cdot 97^{6} +O\left(97^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 45 + 25\cdot 97 + 60\cdot 97^{2} + 45\cdot 97^{3} + 65\cdot 97^{4} + 89\cdot 97^{5} + 90\cdot 97^{6} +O\left(97^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 52 + 71\cdot 97 + 36\cdot 97^{2} + 51\cdot 97^{3} + 31\cdot 97^{4} + 7\cdot 97^{5} + 6\cdot 97^{6} +O\left(97^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 66 + 78\cdot 97 + 13\cdot 97^{2} + 22\cdot 97^{3} + 71\cdot 97^{4} + 68\cdot 97^{5} +O\left(97^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 67 + 2\cdot 97 + 31\cdot 97^{2} + 39\cdot 97^{3} + 30\cdot 97^{4} + 72\cdot 97^{5} + 62\cdot 97^{6} +O\left(97^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 95 + 78\cdot 97 + 26\cdot 97^{2} + 39\cdot 97^{3} + 51\cdot 97^{4} + 94\cdot 97^{5} + 24\cdot 97^{6} +O\left(97^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,4,8,5)(2,3,7,6)$
$(1,8)(4,5)$
$(1,3,8,6)(2,5,7,4)$
$(2,7)(4,5)$
$(1,5,8,4)(2,3,7,6)$
$(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,8)(4,5)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$2$$(2,7)(4,5)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,8)(2,7)$$0$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.