Properties

Label 4.2e12_17e3.8t21.2
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{12} \cdot 17^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$20123648= 2^{12} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{8} - 8 x^{6} + 51 x^{4} - 136 x^{2} + 289 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 3 + 152\cdot 157 + 84\cdot 157^{2} + 91\cdot 157^{3} + 96\cdot 157^{4} + 154\cdot 157^{5} + 30\cdot 157^{6} + 130\cdot 157^{7} +O\left(157^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 26 + 24\cdot 157 + 58\cdot 157^{2} + 33\cdot 157^{3} + 103\cdot 157^{4} + 91\cdot 157^{5} + 78\cdot 157^{6} + 23\cdot 157^{7} +O\left(157^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 45 + 135\cdot 157 + 132\cdot 157^{2} + 64\cdot 157^{3} + 88\cdot 157^{4} + 86\cdot 157^{5} + 96\cdot 157^{6} + 40\cdot 157^{7} +O\left(157^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 76 + 141\cdot 157 + 34\cdot 157^{2} + 154\cdot 157^{3} + 6\cdot 157^{4} + 105\cdot 157^{5} + 103\cdot 157^{6} + 119\cdot 157^{7} +O\left(157^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 81 + 15\cdot 157 + 122\cdot 157^{2} + 2\cdot 157^{3} + 150\cdot 157^{4} + 51\cdot 157^{5} + 53\cdot 157^{6} + 37\cdot 157^{7} +O\left(157^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 112 + 21\cdot 157 + 24\cdot 157^{2} + 92\cdot 157^{3} + 68\cdot 157^{4} + 70\cdot 157^{5} + 60\cdot 157^{6} + 116\cdot 157^{7} +O\left(157^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 131 + 132\cdot 157 + 98\cdot 157^{2} + 123\cdot 157^{3} + 53\cdot 157^{4} + 65\cdot 157^{5} + 78\cdot 157^{6} + 133\cdot 157^{7} +O\left(157^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 154 + 4\cdot 157 + 72\cdot 157^{2} + 65\cdot 157^{3} + 60\cdot 157^{4} + 2\cdot 157^{5} + 126\cdot 157^{6} + 26\cdot 157^{7} +O\left(157^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,5,6)(2,4,3,8)$
$(1,4)(2,3)(5,8)(6,7)$
$(1,8)(4,5)$
$(2,7)(3,6)$
$(1,4,8,5)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $2$ $(2,7)(3,6)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$4$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$4$ $4$ $(1,7,5,6)(2,4,3,8)$ $0$
$4$ $4$ $(1,6,5,7)(2,8,3,4)$ $0$
$4$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$4$ $4$ $(1,4,8,5)(2,7)$ $0$
$4$ $4$ $(1,5,8,4)(2,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.