Properties

Label 4.2e12_13e2.8t15.2c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$692224= 2^{12} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{4} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 433 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 16 + 75\cdot 433 + 34\cdot 433^{2} + 204\cdot 433^{3} + 110\cdot 433^{4} + 123\cdot 433^{5} +O\left(433^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 32 + 296\cdot 433 + 236\cdot 433^{2} + 79\cdot 433^{3} + 104\cdot 433^{4} + 229\cdot 433^{5} +O\left(433^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 99 + 370\cdot 433 + 208\cdot 433^{2} + 253\cdot 433^{3} + 238\cdot 433^{4} + 422\cdot 433^{5} +O\left(433^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 167 + 108\cdot 433 + 274\cdot 433^{2} + 158\cdot 433^{3} + 277\cdot 433^{4} + 204\cdot 433^{5} +O\left(433^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 266 + 324\cdot 433 + 158\cdot 433^{2} + 274\cdot 433^{3} + 155\cdot 433^{4} + 228\cdot 433^{5} +O\left(433^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 334 + 62\cdot 433 + 224\cdot 433^{2} + 179\cdot 433^{3} + 194\cdot 433^{4} + 10\cdot 433^{5} +O\left(433^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 401 + 136\cdot 433 + 196\cdot 433^{2} + 353\cdot 433^{3} + 328\cdot 433^{4} + 203\cdot 433^{5} +O\left(433^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 417 + 357\cdot 433 + 398\cdot 433^{2} + 228\cdot 433^{3} + 322\cdot 433^{4} + 309\cdot 433^{5} +O\left(433^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,6)(3,7)(4,5)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,6,5,7,8,3,4,2)$
$(2,7)(3,6)$
$(1,5,8,4)(2,6,7,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(3,6)$$0$
$4$$2$$(2,6)(3,7)(4,5)$$0$
$4$$2$$(1,6)(2,5)(3,8)(4,7)$$0$
$4$$2$$(2,3)(4,5)(6,7)$$0$
$2$$4$$(1,5,8,4)(2,6,7,3)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$4$$4$$(1,3,8,6)(2,5,7,4)$$0$
$4$$8$$(1,6,5,7,8,3,4,2)$$0$
$4$$8$$(1,3,4,7,8,6,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.