Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 433 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 16 + 75\cdot 433 + 34\cdot 433^{2} + 204\cdot 433^{3} + 110\cdot 433^{4} + 123\cdot 433^{5} +O\left(433^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 + 296\cdot 433 + 236\cdot 433^{2} + 79\cdot 433^{3} + 104\cdot 433^{4} + 229\cdot 433^{5} +O\left(433^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 99 + 370\cdot 433 + 208\cdot 433^{2} + 253\cdot 433^{3} + 238\cdot 433^{4} + 422\cdot 433^{5} +O\left(433^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 167 + 108\cdot 433 + 274\cdot 433^{2} + 158\cdot 433^{3} + 277\cdot 433^{4} + 204\cdot 433^{5} +O\left(433^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 266 + 324\cdot 433 + 158\cdot 433^{2} + 274\cdot 433^{3} + 155\cdot 433^{4} + 228\cdot 433^{5} +O\left(433^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 334 + 62\cdot 433 + 224\cdot 433^{2} + 179\cdot 433^{3} + 194\cdot 433^{4} + 10\cdot 433^{5} +O\left(433^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 401 + 136\cdot 433 + 196\cdot 433^{2} + 353\cdot 433^{3} + 328\cdot 433^{4} + 203\cdot 433^{5} +O\left(433^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 417 + 357\cdot 433 + 398\cdot 433^{2} + 228\cdot 433^{3} + 322\cdot 433^{4} + 309\cdot 433^{5} +O\left(433^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,6)(3,7)(4,5)$ |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,6,5,7,8,3,4,2)$ |
| $(2,7)(3,6)$ |
| $(1,5,8,4)(2,6,7,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(2,7)(3,6)$ |
$0$ |
| $4$ |
$2$ |
$(2,6)(3,7)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,6)(2,5)(3,8)(4,7)$ |
$0$ |
| $4$ |
$2$ |
$(2,3)(4,5)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,4)(2,6,7,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,5,8,4)(2,3,7,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,3,8,6)(2,5,7,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,6,5,7,8,3,4,2)$ |
$0$ |
| $4$ |
$8$ |
$(1,3,4,7,8,6,5,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.