Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 433 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 55 + 112\cdot 433 + 372\cdot 433^{2} + 22\cdot 433^{3} + 43\cdot 433^{4} + 215\cdot 433^{5} + 350\cdot 433^{6} + 259\cdot 433^{7} +O\left(433^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 56 + 237\cdot 433 + 235\cdot 433^{2} + 317\cdot 433^{3} + 410\cdot 433^{4} + 286\cdot 433^{5} + 278\cdot 433^{6} + 122\cdot 433^{7} +O\left(433^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 66 + 414\cdot 433 + 369\cdot 433^{2} + 230\cdot 433^{3} + 260\cdot 433^{4} + 96\cdot 433^{5} + 87\cdot 433^{6} + 167\cdot 433^{7} +O\left(433^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 136 + 81\cdot 433 + 253\cdot 433^{2} + 285\cdot 433^{3} + 420\cdot 433^{4} + 211\cdot 433^{5} + 134\cdot 433^{6} + 368\cdot 433^{7} +O\left(433^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 297 + 351\cdot 433 + 179\cdot 433^{2} + 147\cdot 433^{3} + 12\cdot 433^{4} + 221\cdot 433^{5} + 298\cdot 433^{6} + 64\cdot 433^{7} +O\left(433^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 367 + 18\cdot 433 + 63\cdot 433^{2} + 202\cdot 433^{3} + 172\cdot 433^{4} + 336\cdot 433^{5} + 345\cdot 433^{6} + 265\cdot 433^{7} +O\left(433^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 377 + 195\cdot 433 + 197\cdot 433^{2} + 115\cdot 433^{3} + 22\cdot 433^{4} + 146\cdot 433^{5} + 154\cdot 433^{6} + 310\cdot 433^{7} +O\left(433^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 378 + 320\cdot 433 + 60\cdot 433^{2} + 410\cdot 433^{3} + 389\cdot 433^{4} + 217\cdot 433^{5} + 82\cdot 433^{6} + 173\cdot 433^{7} +O\left(433^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,4,7,8,6,5,2)$ |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4,8,5)(2,6,7,3)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(2,7)(3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(2,7)(3,6)$ | $0$ |
| $4$ | $2$ | $(2,3)(4,5)(6,7)$ | $0$ |
| $4$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $4$ | $2$ | $(1,4)(3,6)(5,8)$ | $0$ |
| $2$ | $4$ | $(1,4,8,5)(2,3,7,6)$ | $0$ |
| $2$ | $4$ | $(1,4,8,5)(2,6,7,3)$ | $0$ |
| $4$ | $4$ | $(1,6,8,3)(2,4,7,5)$ | $0$ |
| $4$ | $8$ | $(1,3,4,7,8,6,5,2)$ | $0$ |
| $4$ | $8$ | $(1,6,5,7,8,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.