Properties

Label 4.2e12_13e2.8t15.1c1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{12} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$692224= 2^{12} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} - 8 x^{4} + 22 x^{2} - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 433 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 55 + 112\cdot 433 + 372\cdot 433^{2} + 22\cdot 433^{3} + 43\cdot 433^{4} + 215\cdot 433^{5} + 350\cdot 433^{6} + 259\cdot 433^{7} +O\left(433^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 56 + 237\cdot 433 + 235\cdot 433^{2} + 317\cdot 433^{3} + 410\cdot 433^{4} + 286\cdot 433^{5} + 278\cdot 433^{6} + 122\cdot 433^{7} +O\left(433^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 66 + 414\cdot 433 + 369\cdot 433^{2} + 230\cdot 433^{3} + 260\cdot 433^{4} + 96\cdot 433^{5} + 87\cdot 433^{6} + 167\cdot 433^{7} +O\left(433^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 136 + 81\cdot 433 + 253\cdot 433^{2} + 285\cdot 433^{3} + 420\cdot 433^{4} + 211\cdot 433^{5} + 134\cdot 433^{6} + 368\cdot 433^{7} +O\left(433^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 297 + 351\cdot 433 + 179\cdot 433^{2} + 147\cdot 433^{3} + 12\cdot 433^{4} + 221\cdot 433^{5} + 298\cdot 433^{6} + 64\cdot 433^{7} +O\left(433^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 367 + 18\cdot 433 + 63\cdot 433^{2} + 202\cdot 433^{3} + 172\cdot 433^{4} + 336\cdot 433^{5} + 345\cdot 433^{6} + 265\cdot 433^{7} +O\left(433^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 377 + 195\cdot 433 + 197\cdot 433^{2} + 115\cdot 433^{3} + 22\cdot 433^{4} + 146\cdot 433^{5} + 154\cdot 433^{6} + 310\cdot 433^{7} +O\left(433^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 378 + 320\cdot 433 + 60\cdot 433^{2} + 410\cdot 433^{3} + 389\cdot 433^{4} + 217\cdot 433^{5} + 82\cdot 433^{6} + 173\cdot 433^{7} +O\left(433^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,7,8,6,5,2)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,3)(2,4)(5,7)(6,8)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(3,6)$$0$
$4$$2$$(2,3)(4,5)(6,7)$$0$
$4$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$4$$2$$(1,4)(3,6)(5,8)$$0$
$2$$4$$(1,4,8,5)(2,3,7,6)$$0$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$4$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$8$$(1,3,4,7,8,6,5,2)$$0$
$4$$8$$(1,6,5,7,8,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.