Properties

Label 4.2e12_107e2.8t23.3
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{12} \cdot 107^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$46895104= 2^{12} \cdot 107^{2} $
Artin number field: Splitting field of $f= x^{8} - 22 x^{6} - 28 x^{5} + 136 x^{4} + 340 x^{3} + 80 x^{2} - 384 x - 286 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 34 a + 7 + \left(36 a + 12\right)\cdot 43 + \left(42 a + 4\right)\cdot 43^{2} + \left(26 a + 6\right)\cdot 43^{3} + \left(10 a + 23\right)\cdot 43^{4} + \left(13 a + 12\right)\cdot 43^{5} + 6\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 17 + \left(a + 40\right)\cdot 43 + \left(19 a + 39\right)\cdot 43^{2} + \left(25 a + 40\right)\cdot 43^{3} + \left(29 a + 30\right)\cdot 43^{4} + \left(23 a + 22\right)\cdot 43^{5} + \left(4 a + 19\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 37 + \left(41 a + 21\right)\cdot 43 + \left(23 a + 14\right)\cdot 43^{2} + \left(17 a + 4\right)\cdot 43^{3} + \left(13 a + 35\right)\cdot 43^{4} + \left(19 a + 16\right)\cdot 43^{5} + 38 a\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 41 + \left(6 a + 14\right)\cdot 43 + 10\cdot 43^{2} + \left(16 a + 33\right)\cdot 43^{3} + \left(32 a + 6\right)\cdot 43^{4} + \left(29 a + 15\right)\cdot 43^{5} + \left(42 a + 36\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 17 a + \left(32 a + 11\right)\cdot 43 + \left(42 a + 31\right)\cdot 43^{2} + \left(25 a + 36\right)\cdot 43^{3} + \left(16 a + 39\right)\cdot 43^{4} + \left(40 a + 2\right)\cdot 43^{5} + \left(5 a + 10\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 17 + \left(10 a + 26\right)\cdot 43 + 41\cdot 43^{2} + \left(17 a + 19\right)\cdot 43^{3} + \left(26 a + 30\right)\cdot 43^{4} + \left(2 a + 26\right)\cdot 43^{5} + \left(37 a + 18\right)\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 24 + 26\cdot 43 + 20\cdot 43^{2} + 23\cdot 43^{3} + 40\cdot 43^{4} + 32\cdot 43^{5} + 21\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 29 + 18\cdot 43 + 9\cdot 43^{2} + 7\cdot 43^{3} + 8\cdot 43^{4} + 42\cdot 43^{5} + 15\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(3,5)(4,8)$
$(1,5,8)(3,7,4)$
$(1,4)(2,6)(3,5)(7,8)$
$(1,2,4,6)(3,7,5,8)$
$(1,8,4,7)(2,5,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,4)(2,6)(3,5)(7,8)$ $-4$
$12$ $2$ $(1,7)(3,5)(4,8)$ $0$
$8$ $3$ $(1,5,8)(3,7,4)$ $1$
$6$ $4$ $(1,2,4,6)(3,7,5,8)$ $0$
$8$ $6$ $(1,8,2,4,7,6)(3,5)$ $-1$
$6$ $8$ $(1,2,8,5,4,6,7,3)$ $0$
$6$ $8$ $(1,6,8,3,4,2,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.