Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 42 a + 8 + \left(22 a + 26\right)\cdot 43 + \left(27 a + 16\right)\cdot 43^{2} + \left(23 a + 36\right)\cdot 43^{3} + \left(19 a + 19\right)\cdot 43^{4} + \left(11 a + 42\right)\cdot 43^{5} + \left(15 a + 31\right)\cdot 43^{6} + \left(9 a + 22\right)\cdot 43^{7} + \left(42 a + 21\right)\cdot 43^{8} + \left(37 a + 16\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 42 a + 36 + \left(22 a + 35\right)\cdot 43 + \left(27 a + 21\right)\cdot 43^{2} + \left(23 a + 10\right)\cdot 43^{3} + \left(19 a + 27\right)\cdot 43^{4} + \left(11 a + 8\right)\cdot 43^{5} + \left(15 a + 7\right)\cdot 43^{6} + \left(9 a + 26\right)\cdot 43^{7} + \left(42 a + 31\right)\cdot 43^{8} + \left(37 a + 30\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 36 a + 25 + \left(21 a + 28\right)\cdot 43 + \left(34 a + 36\right)\cdot 43^{2} + \left(13 a + 31\right)\cdot 43^{3} + \left(34 a + 32\right)\cdot 43^{4} + \left(23 a + 26\right)\cdot 43^{5} + \left(3 a + 31\right)\cdot 43^{6} + \left(37 a + 4\right)\cdot 43^{7} + \left(24 a + 6\right)\cdot 43^{8} + \left(33 a + 17\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 + 8\cdot 43 + 28\cdot 43^{2} + 17\cdot 43^{3} + 6\cdot 43^{4} + 29\cdot 43^{5} + 2\cdot 43^{7} + 43^{8} + 3\cdot 43^{9} +O\left(43^{ 10 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ a + 35 + \left(20 a + 16\right)\cdot 43 + \left(15 a + 26\right)\cdot 43^{2} + \left(19 a + 6\right)\cdot 43^{3} + \left(23 a + 23\right)\cdot 43^{4} + 31 a\cdot 43^{5} + \left(27 a + 11\right)\cdot 43^{6} + \left(33 a + 20\right)\cdot 43^{7} + 21\cdot 43^{8} + \left(5 a + 26\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ a + 7 + \left(20 a + 7\right)\cdot 43 + \left(15 a + 21\right)\cdot 43^{2} + \left(19 a + 32\right)\cdot 43^{3} + \left(23 a + 15\right)\cdot 43^{4} + \left(31 a + 34\right)\cdot 43^{5} + \left(27 a + 35\right)\cdot 43^{6} + \left(33 a + 16\right)\cdot 43^{7} + 11\cdot 43^{8} + \left(5 a + 12\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 7 a + 18 + \left(21 a + 14\right)\cdot 43 + \left(8 a + 6\right)\cdot 43^{2} + \left(29 a + 11\right)\cdot 43^{3} + \left(8 a + 10\right)\cdot 43^{4} + \left(19 a + 16\right)\cdot 43^{5} + \left(39 a + 11\right)\cdot 43^{6} + \left(5 a + 38\right)\cdot 43^{7} + \left(18 a + 36\right)\cdot 43^{8} + \left(9 a + 25\right)\cdot 43^{9} +O\left(43^{ 10 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 24 + 34\cdot 43 + 14\cdot 43^{2} + 25\cdot 43^{3} + 36\cdot 43^{4} + 13\cdot 43^{5} + 42\cdot 43^{6} + 40\cdot 43^{7} + 41\cdot 43^{8} + 39\cdot 43^{9} +O\left(43^{ 10 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,5,7)(2,4,6,8)$ |
| $(1,5)(2,8)(4,6)$ |
| $(1,6,8)(2,4,5)$ |
| $(1,5)(2,6)(3,7)(4,8)$ |
| $(1,6,5,2)(3,4,7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,5)(2,6)(3,7)(4,8)$ |
$-4$ |
| $12$ |
$2$ |
$(1,5)(2,8)(4,6)$ |
$0$ |
| $8$ |
$3$ |
$(2,8,3)(4,7,6)$ |
$1$ |
| $6$ |
$4$ |
$(1,6,5,2)(3,4,7,8)$ |
$0$ |
| $8$ |
$6$ |
$(1,5)(2,7,8,6,3,4)$ |
$-1$ |
| $6$ |
$8$ |
$(1,4,7,2,5,8,3,6)$ |
$0$ |
| $6$ |
$8$ |
$(1,8,7,6,5,4,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.