Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 25 + 10\cdot 31 + 26\cdot 31^{2} + 26\cdot 31^{3} + 23\cdot 31^{4} + 23\cdot 31^{5} + 13\cdot 31^{6} + 10\cdot 31^{7} + 24\cdot 31^{8} + 13\cdot 31^{9} + 17\cdot 31^{11} + 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 10 a + \left(18 a + 1\right)\cdot 31 + \left(26 a + 22\right)\cdot 31^{2} + \left(26 a + 6\right)\cdot 31^{3} + \left(9 a + 4\right)\cdot 31^{4} + \left(25 a + 11\right)\cdot 31^{5} + \left(30 a + 10\right)\cdot 31^{6} + \left(30 a + 20\right)\cdot 31^{7} + \left(12 a + 21\right)\cdot 31^{8} + \left(30 a + 2\right)\cdot 31^{9} + \left(7 a + 25\right)\cdot 31^{10} + \left(16 a + 4\right)\cdot 31^{11} + \left(26 a + 17\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 21 a + 20 + \left(12 a + 27\right)\cdot 31 + \left(4 a + 25\right)\cdot 31^{2} + \left(4 a + 2\right)\cdot 31^{3} + \left(21 a + 28\right)\cdot 31^{4} + \left(5 a + 20\right)\cdot 31^{5} + 15\cdot 31^{6} + 20\cdot 31^{7} + \left(18 a + 16\right)\cdot 31^{8} + 19\cdot 31^{9} + \left(23 a + 10\right)\cdot 31^{10} + \left(14 a + 29\right)\cdot 31^{11} + \left(4 a + 22\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 4 + 6\cdot 31 + 11\cdot 31^{2} + 8\cdot 31^{3} + 6\cdot 31^{4} + 21\cdot 31^{5} + 27\cdot 31^{6} + 30\cdot 31^{7} + 14\cdot 31^{8} + 31^{9} + 31^{10} + 18\cdot 31^{11} + 24\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 14 a + 9 + \left(15 a + 15\right)\cdot 31 + \left(15 a + 11\right)\cdot 31^{2} + \left(18 a + 13\right)\cdot 31^{3} + \left(27 a + 12\right)\cdot 31^{4} + \left(13 a + 23\right)\cdot 31^{5} + \left(25 a + 9\right)\cdot 31^{6} + \left(18 a + 30\right)\cdot 31^{7} + \left(3 a + 28\right)\cdot 31^{8} + \left(24 a + 20\right)\cdot 31^{9} + \left(26 a + 28\right)\cdot 31^{10} + \left(23 a + 16\right)\cdot 31^{11} + 24 a\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 17 a + 6 + \left(15 a + 1\right)\cdot 31 + \left(15 a + 27\right)\cdot 31^{2} + \left(12 a + 3\right)\cdot 31^{3} + \left(3 a + 18\right)\cdot 31^{4} + \left(17 a + 23\right)\cdot 31^{5} + \left(5 a + 15\right)\cdot 31^{6} + \left(12 a + 11\right)\cdot 31^{7} + \left(27 a + 17\right)\cdot 31^{8} + \left(6 a + 3\right)\cdot 31^{9} + \left(4 a + 27\right)\cdot 31^{10} + \left(7 a + 6\right)\cdot 31^{11} + \left(6 a + 26\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3,4)$ |
| $(1,5,6)$ |
| $(1,2,5,3)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $9$ |
$2$ |
$(1,5)(2,3)$ |
$0$ |
| $4$ |
$3$ |
$(2,3,4)$ |
$1$ |
| $4$ |
$3$ |
$(1,5,6)(2,3,4)$ |
$-2$ |
| $9$ |
$4$ |
$(1,2,5,3)(4,6)$ |
$0$ |
| $9$ |
$4$ |
$(1,3,5,2)(4,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.