Properties

Label 4.2e11_7e2.8t29.1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{11} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$100352= 2^{11} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{6} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 4 + \left(9 a + 11\right)\cdot 23 + \left(10 a + 17\right)\cdot 23^{2} + \left(14 a + 13\right)\cdot 23^{3} + \left(a + 5\right)\cdot 23^{4} + \left(18 a + 17\right)\cdot 23^{5} + \left(15 a + 4\right)\cdot 23^{6} + \left(14 a + 16\right)\cdot 23^{7} + \left(14 a + 15\right)\cdot 23^{8} + \left(12 a + 17\right)\cdot 23^{9} + \left(17 a + 11\right)\cdot 23^{10} + \left(18 a + 1\right)\cdot 23^{11} + \left(16 a + 4\right)\cdot 23^{12} + \left(21 a + 21\right)\cdot 23^{13} + \left(7 a + 2\right)\cdot 23^{14} + \left(14 a + 1\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 20 + 15\cdot 23 + 20\cdot 23^{2} + 19\cdot 23^{3} + 2\cdot 23^{4} + 22\cdot 23^{5} + 15\cdot 23^{6} + 23^{7} + 13\cdot 23^{8} + 5\cdot 23^{9} + 22\cdot 23^{10} + 16\cdot 23^{11} + 10\cdot 23^{12} + 17\cdot 23^{13} + 21\cdot 23^{14} + 13\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 9 + \left(5 a + 1\right)\cdot 23 + \left(21 a + 16\right)\cdot 23^{2} + \left(22 a + 10\right)\cdot 23^{3} + \left(15 a + 18\right)\cdot 23^{4} + \left(20 a + 21\right)\cdot 23^{5} + \left(22 a + 21\right)\cdot 23^{6} + 21\cdot 23^{7} + \left(15 a + 19\right)\cdot 23^{8} + \left(20 a + 9\right)\cdot 23^{9} + \left(22 a + 10\right)\cdot 23^{10} + \left(19 a + 14\right)\cdot 23^{11} + \left(5 a + 15\right)\cdot 23^{12} + \left(16 a + 9\right)\cdot 23^{13} + \left(15 a + 15\right)\cdot 23^{14} + \left(10 a + 8\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 9 + 8\cdot 23 + 16\cdot 23^{2} + 15\cdot 23^{3} + 6\cdot 23^{4} + 10\cdot 23^{5} + 2\cdot 23^{6} + 14\cdot 23^{7} + 5\cdot 23^{8} + 14\cdot 23^{9} + 9\cdot 23^{10} + 5\cdot 23^{11} + 17\cdot 23^{12} + 3\cdot 23^{13} + 17\cdot 23^{14} + 13\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 19 + \left(13 a + 11\right)\cdot 23 + \left(12 a + 5\right)\cdot 23^{2} + \left(8 a + 9\right)\cdot 23^{3} + \left(21 a + 17\right)\cdot 23^{4} + \left(4 a + 5\right)\cdot 23^{5} + \left(7 a + 18\right)\cdot 23^{6} + \left(8 a + 6\right)\cdot 23^{7} + \left(8 a + 7\right)\cdot 23^{8} + \left(10 a + 5\right)\cdot 23^{9} + \left(5 a + 11\right)\cdot 23^{10} + \left(4 a + 21\right)\cdot 23^{11} + \left(6 a + 18\right)\cdot 23^{12} + \left(a + 1\right)\cdot 23^{13} + \left(15 a + 20\right)\cdot 23^{14} + \left(8 a + 21\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 3 + 7\cdot 23 + 2\cdot 23^{2} + 3\cdot 23^{3} + 20\cdot 23^{4} + 7\cdot 23^{6} + 21\cdot 23^{7} + 9\cdot 23^{8} + 17\cdot 23^{9} + 6\cdot 23^{11} + 12\cdot 23^{12} + 5\cdot 23^{13} + 23^{14} + 9\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 9 a + 14 + \left(17 a + 21\right)\cdot 23 + \left(a + 6\right)\cdot 23^{2} + 12\cdot 23^{3} + \left(7 a + 4\right)\cdot 23^{4} + \left(2 a + 1\right)\cdot 23^{5} + 23^{6} + \left(22 a + 1\right)\cdot 23^{7} + \left(7 a + 3\right)\cdot 23^{8} + \left(2 a + 13\right)\cdot 23^{9} + 12\cdot 23^{10} + \left(3 a + 8\right)\cdot 23^{11} + \left(17 a + 7\right)\cdot 23^{12} + \left(6 a + 13\right)\cdot 23^{13} + \left(7 a + 7\right)\cdot 23^{14} + \left(12 a + 14\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 8 }$ $=$ $ 14 + 14\cdot 23 + 6\cdot 23^{2} + 7\cdot 23^{3} + 16\cdot 23^{4} + 12\cdot 23^{5} + 20\cdot 23^{6} + 8\cdot 23^{7} + 17\cdot 23^{8} + 8\cdot 23^{9} + 13\cdot 23^{10} + 17\cdot 23^{11} + 5\cdot 23^{12} + 19\cdot 23^{13} + 5\cdot 23^{14} + 9\cdot 23^{15} +O\left(23^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,6)$
$(1,4)(2,3)(5,8)(6,7)$
$(3,4)(7,8)$
$(1,5)(4,8)$
$(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $-4$
$2$ $2$ $(1,5)(2,6)$ $0$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $0$
$4$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$4$ $2$ $(1,2)(5,6)$ $2$
$4$ $2$ $(1,5)(4,8)$ $0$
$4$ $2$ $(1,8)(2,3)(4,5)(6,7)$ $0$
$4$ $2$ $(1,5)(2,6)(3,4)(7,8)$ $-2$
$4$ $4$ $(1,8,5,4)(2,7,6,3)$ $0$
$4$ $4$ $(1,4,5,8)(2,7,6,3)$ $0$
$4$ $4$ $(1,6,5,2)(3,8,7,4)$ $0$
$8$ $4$ $(1,3,2,4)(5,7,6,8)$ $0$
$8$ $4$ $(1,7,6,8)(2,4,5,3)$ $0$
$8$ $4$ $(1,6,5,2)(4,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.