Properties

Label 4.2e11_7e2.6t10.1
Dimension 4
Group $C_3^2:C_4$
Conductor $ 2^{11} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$100352= 2^{11} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 6 x^{2} - 4 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 21 + \left(27 a + 24\right)\cdot 31^{2} + \left(5 a + 29\right)\cdot 31^{3} + \left(28 a + 8\right)\cdot 31^{4} + \left(27 a + 11\right)\cdot 31^{5} + \left(23 a + 11\right)\cdot 31^{6} + \left(7 a + 17\right)\cdot 31^{7} + \left(25 a + 3\right)\cdot 31^{8} + \left(14 a + 2\right)\cdot 31^{9} + \left(26 a + 18\right)\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 10 + 18\cdot 31 + 25\cdot 31^{2} + 30\cdot 31^{3} + 16\cdot 31^{4} + 20\cdot 31^{5} + 27\cdot 31^{6} + 25\cdot 31^{7} + 20\cdot 31^{8} + 29\cdot 31^{9} + 12\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 30 + \left(14 a + 29\right)\cdot 31 + \left(20 a + 1\right)\cdot 31^{2} + \left(9 a + 24\right)\cdot 31^{3} + \left(16 a + 6\right)\cdot 31^{4} + \left(7 a + 7\right)\cdot 31^{5} + \left(20 a + 5\right)\cdot 31^{6} + \left(18 a + 11\right)\cdot 31^{7} + \left(3 a + 26\right)\cdot 31^{8} + \left(8 a + 16\right)\cdot 31^{9} + \left(20 a + 4\right)\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 9 + \left(30 a + 8\right)\cdot 31 + \left(3 a + 15\right)\cdot 31^{2} + \left(25 a + 14\right)\cdot 31^{3} + \left(2 a + 28\right)\cdot 31^{4} + \left(3 a + 7\right)\cdot 31^{5} + 7 a\cdot 31^{6} + \left(23 a + 9\right)\cdot 31^{7} + \left(5 a + 15\right)\cdot 31^{8} + \left(16 a + 6\right)\cdot 31^{9} + \left(4 a + 25\right)\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 7 + 31 + 29\cdot 31^{2} + 31^{3} + 2\cdot 31^{4} + 9\cdot 31^{5} + 10\cdot 31^{6} + 31^{7} + 12\cdot 31^{8} + 8\cdot 31^{9} + 26\cdot 31^{10} +O\left(31^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 18 + \left(16 a + 3\right)\cdot 31 + \left(10 a + 28\right)\cdot 31^{2} + \left(21 a + 22\right)\cdot 31^{3} + \left(14 a + 29\right)\cdot 31^{4} + \left(23 a + 5\right)\cdot 31^{5} + \left(10 a + 7\right)\cdot 31^{6} + \left(12 a + 28\right)\cdot 31^{7} + \left(27 a + 14\right)\cdot 31^{8} + \left(22 a + 29\right)\cdot 31^{9} + \left(10 a + 5\right)\cdot 31^{10} +O\left(31^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(3,5,6)$
$(1,5,2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$9$ $2$ $(1,2)(3,5)$ $0$
$4$ $3$ $(3,5,6)$ $1$
$4$ $3$ $(1,2,4)(3,5,6)$ $-2$
$9$ $4$ $(1,5,2,3)(4,6)$ $0$
$9$ $4$ $(1,3,2,5)(4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.