Properties

Label 4.2e11_5e3.5t3.1c1
Dimension 4
Group $F_5$
Conductor $ 2^{11} \cdot 5^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$256000= 2^{11} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 6 x^{3} - 8 x^{2} + 9 x - 14 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.2e3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 21\cdot 41 + 28\cdot 41^{2} + 20\cdot 41^{3} + 33\cdot 41^{4} + 6\cdot 41^{5} + 23\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 12 + \left(26 a + 10\right)\cdot 41 + \left(20 a + 32\right)\cdot 41^{2} + \left(25 a + 18\right)\cdot 41^{3} + 8\cdot 41^{4} + \left(13 a + 23\right)\cdot 41^{5} + \left(11 a + 30\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 7 a + 35 + \left(34 a + 1\right)\cdot 41 + \left(20 a + 24\right)\cdot 41^{2} + \left(8 a + 22\right)\cdot 41^{3} + \left(35 a + 40\right)\cdot 41^{4} + 7 a\cdot 41^{5} + \left(9 a + 40\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 34 a + 15 + \left(6 a + 15\right)\cdot 41 + \left(20 a + 11\right)\cdot 41^{2} + \left(32 a + 27\right)\cdot 41^{3} + \left(5 a + 14\right)\cdot 41^{4} + \left(33 a + 30\right)\cdot 41^{5} + \left(31 a + 18\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 16 + \left(14 a + 33\right)\cdot 41 + \left(20 a + 26\right)\cdot 41^{2} + \left(15 a + 33\right)\cdot 41^{3} + \left(40 a + 25\right)\cdot 41^{4} + \left(27 a + 20\right)\cdot 41^{5} + \left(29 a + 10\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,2,5,4)$
$(1,5,2,4)$
$(1,2)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,2)(4,5)$$0$
$5$$4$$(1,5,2,4)$$0$
$5$$4$$(1,4,2,5)$$0$
$4$$5$$(1,3,2,5,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.