Properties

Label 4.2e11_59e2.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{11} \cdot 59^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$7129088= 2^{11} \cdot 59^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 8 x^{3} + 24 x^{2} + 10 x - 68 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 353 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 102\cdot 353 + 168\cdot 353^{2} + 8\cdot 353^{3} + 143\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 113 + 145\cdot 353 + 174\cdot 353^{2} + 348\cdot 353^{3} + 181\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 155 + 13\cdot 353 + 115\cdot 353^{2} + 93\cdot 353^{3} + 59\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 203 + 181\cdot 353 + 206\cdot 353^{2} + 38\cdot 353^{3} + 291\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 221 + 263\cdot 353 + 41\cdot 353^{2} + 217\cdot 353^{3} + 30\cdot 353^{4} +O\left(353^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.