Properties

Label 4.2e11_43e2.5t5.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{11} \cdot 43^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$3786752= 2^{11} \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 4 x^{3} - 8 x^{2} - 18 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 92 a + 95 + \left(58 a + 84\right)\cdot 97 + \left(13 a + 51\right)\cdot 97^{2} + \left(76 a + 69\right)\cdot 97^{3} + \left(25 a + 42\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 77 + 83\cdot 97 + 67\cdot 97^{2} + 62\cdot 97^{3} + 42\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 90 + \left(38 a + 51\right)\cdot 97 + \left(83 a + 6\right)\cdot 97^{2} + \left(20 a + 35\right)\cdot 97^{3} + \left(71 a + 89\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 45 + \left(4 a + 3\right)\cdot 97 + \left(20 a + 26\right)\cdot 97^{2} + \left(49 a + 47\right)\cdot 97^{3} + 82\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 a + 83 + \left(92 a + 66\right)\cdot 97 + \left(76 a + 41\right)\cdot 97^{2} + \left(47 a + 76\right)\cdot 97^{3} + \left(96 a + 33\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.