Properties

Label 4.2e11_3e8.6t10.4
Dimension 4
Group $C_3^2:C_4$
Conductor $ 2^{11} \cdot 3^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$13436928= 2^{11} \cdot 3^{8} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - 12 x^{3} + 9 x^{2} - 36 x + 28 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 16\cdot 31 + 12\cdot 31^{2} + 3\cdot 31^{3} + 6\cdot 31^{5} + 21\cdot 31^{6} + 31^{7} + 31^{8} + 15\cdot 31^{9} + 15\cdot 31^{10} + 9\cdot 31^{11} + 24\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 11 + \left(3 a + 25\right)\cdot 31 + \left(7 a + 3\right)\cdot 31^{2} + \left(18 a + 30\right)\cdot 31^{3} + \left(6 a + 17\right)\cdot 31^{4} + \left(26 a + 20\right)\cdot 31^{5} + \left(12 a + 20\right)\cdot 31^{6} + \left(a + 19\right)\cdot 31^{7} + \left(11 a + 4\right)\cdot 31^{8} + \left(12 a + 1\right)\cdot 31^{9} + \left(12 a + 17\right)\cdot 31^{10} + \left(a + 15\right)\cdot 31^{11} + \left(11 a + 8\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 19 a + 4 + \left(27 a + 20\right)\cdot 31 + \left(23 a + 14\right)\cdot 31^{2} + \left(12 a + 28\right)\cdot 31^{3} + \left(24 a + 12\right)\cdot 31^{4} + \left(4 a + 4\right)\cdot 31^{5} + \left(18 a + 20\right)\cdot 31^{6} + \left(29 a + 9\right)\cdot 31^{7} + \left(19 a + 25\right)\cdot 31^{8} + \left(18 a + 14\right)\cdot 31^{9} + \left(18 a + 29\right)\cdot 31^{10} + \left(29 a + 5\right)\cdot 31^{11} + \left(19 a + 29\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 21 + \left(4 a + 29\right)\cdot 31 + \left(15 a + 3\right)\cdot 31^{2} + \left(21 a + 13\right)\cdot 31^{3} + \left(25 a + 14\right)\cdot 31^{4} + \left(8 a + 27\right)\cdot 31^{5} + \left(7 a + 19\right)\cdot 31^{6} + \left(5 a + 20\right)\cdot 31^{7} + \left(4 a + 5\right)\cdot 31^{8} + 19\cdot 31^{9} + \left(11 a + 24\right)\cdot 31^{10} + \left(2 a + 23\right)\cdot 31^{11} + 15\cdot 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 23 + 7\cdot 31 + 28\cdot 31^{2} + 7\cdot 31^{3} + 3\cdot 31^{4} + 15\cdot 31^{5} + 16\cdot 31^{6} + 17\cdot 31^{7} + 16\cdot 31^{8} + 27\cdot 31^{9} + 21\cdot 31^{10} + 20\cdot 31^{11} + 31^{12} +O\left(31^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 18 + \left(26 a + 24\right)\cdot 31 + \left(15 a + 29\right)\cdot 31^{2} + \left(9 a + 9\right)\cdot 31^{3} + \left(5 a + 13\right)\cdot 31^{4} + \left(22 a + 19\right)\cdot 31^{5} + \left(23 a + 25\right)\cdot 31^{6} + \left(25 a + 23\right)\cdot 31^{7} + \left(26 a + 8\right)\cdot 31^{8} + \left(30 a + 15\right)\cdot 31^{9} + \left(19 a + 15\right)\cdot 31^{10} + \left(28 a + 17\right)\cdot 31^{11} + \left(30 a + 13\right)\cdot 31^{12} +O\left(31^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,2,3)$
$(1,4,2,5)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$9$ $2$ $(1,2)(4,5)$ $0$
$4$ $3$ $(1,2,3)$ $-2$
$4$ $3$ $(1,2,3)(4,5,6)$ $1$
$9$ $4$ $(1,4,2,5)(3,6)$ $0$
$9$ $4$ $(1,5,2,4)(3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.